Abdusaid Saidahmatov, Xuefeng Liang, Yuqiang Shi, Xu Han, Hong Liu
{"title":"选择性CDK9抑制剂NVP-2的高效合成及对接分析","authors":"Abdusaid Saidahmatov, Xuefeng Liang, Yuqiang Shi, Xu Han, Hong Liu","doi":"10.1055/s-0041-1735144","DOIUrl":null,"url":null,"abstract":"Abstract Graphical Abstract NVP-2 (1), a potent and selective inhibitor of cyclin-dependent kinase 9 (CDK9), showed potent antitumor activity in preclinical studies. In this work, we designed and adopted a convergent synthetic route to efficiently synthesize NVP-2 (1). The key intermediate (7) was synthesized from malononitrile (2) and 1-bromo-2-(2-bromoethoxy)ethane (3) by successive cyclization, reduction, nucleophilic substitution with 2-bromo-6-fluoropyridine, and Suzuki–Miyaura reaction with (5-chloro-2-fluoropyridin-4-yl)boronic acid. Another key intermediate (11) was synthesized from (S)-1-methoxypropan-2-ol (8) by reaction with TsCl, electrophilic substitution reaction with tert-butyl ((1r,4r)-4-aminocyclohexyl)carbamate, and then by deprotection of Boc. Finally, a substitution reaction by the key intermediates (7) and (11) to afford the target product NVP-2 (1). The reaction conditions of the whole synthesis process were simple and mild, free of harsh conditions such as the microwave reaction and dangerous reagents in the original patent, and realized the efficient synthesis of NVP-2. In addition, we analyzed the binding mode of NVP-2 in the active pocket of CDK9 to provide reasonable design ideas for subsequent discovery of novel CDK9 inhibitors.","PeriodicalId":19767,"journal":{"name":"Pharmaceutical Fronts","volume":"20 1","pages":"e50 - e55"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Synthesis and Docking Analysis of Selective CDK9 Inhibitor NVP-2\",\"authors\":\"Abdusaid Saidahmatov, Xuefeng Liang, Yuqiang Shi, Xu Han, Hong Liu\",\"doi\":\"10.1055/s-0041-1735144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Graphical Abstract NVP-2 (1), a potent and selective inhibitor of cyclin-dependent kinase 9 (CDK9), showed potent antitumor activity in preclinical studies. In this work, we designed and adopted a convergent synthetic route to efficiently synthesize NVP-2 (1). The key intermediate (7) was synthesized from malononitrile (2) and 1-bromo-2-(2-bromoethoxy)ethane (3) by successive cyclization, reduction, nucleophilic substitution with 2-bromo-6-fluoropyridine, and Suzuki–Miyaura reaction with (5-chloro-2-fluoropyridin-4-yl)boronic acid. Another key intermediate (11) was synthesized from (S)-1-methoxypropan-2-ol (8) by reaction with TsCl, electrophilic substitution reaction with tert-butyl ((1r,4r)-4-aminocyclohexyl)carbamate, and then by deprotection of Boc. Finally, a substitution reaction by the key intermediates (7) and (11) to afford the target product NVP-2 (1). The reaction conditions of the whole synthesis process were simple and mild, free of harsh conditions such as the microwave reaction and dangerous reagents in the original patent, and realized the efficient synthesis of NVP-2. In addition, we analyzed the binding mode of NVP-2 in the active pocket of CDK9 to provide reasonable design ideas for subsequent discovery of novel CDK9 inhibitors.\",\"PeriodicalId\":19767,\"journal\":{\"name\":\"Pharmaceutical Fronts\",\"volume\":\"20 1\",\"pages\":\"e50 - e55\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Fronts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/s-0041-1735144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Fronts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0041-1735144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient Synthesis and Docking Analysis of Selective CDK9 Inhibitor NVP-2
Abstract Graphical Abstract NVP-2 (1), a potent and selective inhibitor of cyclin-dependent kinase 9 (CDK9), showed potent antitumor activity in preclinical studies. In this work, we designed and adopted a convergent synthetic route to efficiently synthesize NVP-2 (1). The key intermediate (7) was synthesized from malononitrile (2) and 1-bromo-2-(2-bromoethoxy)ethane (3) by successive cyclization, reduction, nucleophilic substitution with 2-bromo-6-fluoropyridine, and Suzuki–Miyaura reaction with (5-chloro-2-fluoropyridin-4-yl)boronic acid. Another key intermediate (11) was synthesized from (S)-1-methoxypropan-2-ol (8) by reaction with TsCl, electrophilic substitution reaction with tert-butyl ((1r,4r)-4-aminocyclohexyl)carbamate, and then by deprotection of Boc. Finally, a substitution reaction by the key intermediates (7) and (11) to afford the target product NVP-2 (1). The reaction conditions of the whole synthesis process were simple and mild, free of harsh conditions such as the microwave reaction and dangerous reagents in the original patent, and realized the efficient synthesis of NVP-2. In addition, we analyzed the binding mode of NVP-2 in the active pocket of CDK9 to provide reasonable design ideas for subsequent discovery of novel CDK9 inhibitors.