基于极大极小凹损失函数的鲁棒联合稀疏信号恢复

Kyohei Suzuki, M. Yukawa
{"title":"基于极大极小凹损失函数的鲁棒联合稀疏信号恢复","authors":"Kyohei Suzuki, M. Yukawa","doi":"10.23919/Eusipco47968.2020.9287635","DOIUrl":null,"url":null,"abstract":"We propose a robust approach to recovering the jointly-sparse signals in the presence of outliers. We formulate the recovering task as a minimization problem involving three terms: (i) the minimax concave (MC) loss function, (ii) the MC penalty function, and (iii) the squared Frobenius norm. The MC-based loss and penalty functions enhance robustness and group sparsity, respectively, while the squared Frobenius norm induces the convexity. The problem is solved, via reformulation, by the primal-dual splitting method, for which the convergence condition is derived. Numerical examples show that the proposed approach enjoys remarkable outlier robustness.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"109 1","pages":"2070-2074"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust Jointly-Sparse Signal Recovery Based on Minimax Concave Loss Function\",\"authors\":\"Kyohei Suzuki, M. Yukawa\",\"doi\":\"10.23919/Eusipco47968.2020.9287635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a robust approach to recovering the jointly-sparse signals in the presence of outliers. We formulate the recovering task as a minimization problem involving three terms: (i) the minimax concave (MC) loss function, (ii) the MC penalty function, and (iii) the squared Frobenius norm. The MC-based loss and penalty functions enhance robustness and group sparsity, respectively, while the squared Frobenius norm induces the convexity. The problem is solved, via reformulation, by the primal-dual splitting method, for which the convergence condition is derived. Numerical examples show that the proposed approach enjoys remarkable outlier robustness.\",\"PeriodicalId\":6705,\"journal\":{\"name\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"109 1\",\"pages\":\"2070-2074\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/Eusipco47968.2020.9287635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一种鲁棒的方法来恢复联合稀疏信号在异常值的存在。我们将恢复任务表述为包含三个项的最小化问题:(i)极大极小凹(MC)损失函数,(ii) MC惩罚函数,以及(iii) Frobenius范数的平方。基于mc的损失函数和惩罚函数分别增强了鲁棒性和群稀疏性,而平方Frobenius范数诱导了凸性。通过对原对偶分裂方法的重新表述,得到了该方法的收敛条件。数值算例表明,该方法具有显著的离群鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust Jointly-Sparse Signal Recovery Based on Minimax Concave Loss Function
We propose a robust approach to recovering the jointly-sparse signals in the presence of outliers. We formulate the recovering task as a minimization problem involving three terms: (i) the minimax concave (MC) loss function, (ii) the MC penalty function, and (iii) the squared Frobenius norm. The MC-based loss and penalty functions enhance robustness and group sparsity, respectively, while the squared Frobenius norm induces the convexity. The problem is solved, via reformulation, by the primal-dual splitting method, for which the convergence condition is derived. Numerical examples show that the proposed approach enjoys remarkable outlier robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Eusipco 2021 Cover Page A graph-theoretic sensor-selection scheme for covariance-based Motor Imagery (MI) decoding Hidden Markov Model Based Data-driven Calibration of Non-dispersive Infrared Gas Sensor Deep Transform Learning for Multi-Sensor Fusion Two Stages Parallel LMS Structure: A Pipelined Hardware Architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1