{"title":"基于极大极小凹损失函数的鲁棒联合稀疏信号恢复","authors":"Kyohei Suzuki, M. Yukawa","doi":"10.23919/Eusipco47968.2020.9287635","DOIUrl":null,"url":null,"abstract":"We propose a robust approach to recovering the jointly-sparse signals in the presence of outliers. We formulate the recovering task as a minimization problem involving three terms: (i) the minimax concave (MC) loss function, (ii) the MC penalty function, and (iii) the squared Frobenius norm. The MC-based loss and penalty functions enhance robustness and group sparsity, respectively, while the squared Frobenius norm induces the convexity. The problem is solved, via reformulation, by the primal-dual splitting method, for which the convergence condition is derived. Numerical examples show that the proposed approach enjoys remarkable outlier robustness.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"109 1","pages":"2070-2074"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust Jointly-Sparse Signal Recovery Based on Minimax Concave Loss Function\",\"authors\":\"Kyohei Suzuki, M. Yukawa\",\"doi\":\"10.23919/Eusipco47968.2020.9287635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a robust approach to recovering the jointly-sparse signals in the presence of outliers. We formulate the recovering task as a minimization problem involving three terms: (i) the minimax concave (MC) loss function, (ii) the MC penalty function, and (iii) the squared Frobenius norm. The MC-based loss and penalty functions enhance robustness and group sparsity, respectively, while the squared Frobenius norm induces the convexity. The problem is solved, via reformulation, by the primal-dual splitting method, for which the convergence condition is derived. Numerical examples show that the proposed approach enjoys remarkable outlier robustness.\",\"PeriodicalId\":6705,\"journal\":{\"name\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"109 1\",\"pages\":\"2070-2074\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/Eusipco47968.2020.9287635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust Jointly-Sparse Signal Recovery Based on Minimax Concave Loss Function
We propose a robust approach to recovering the jointly-sparse signals in the presence of outliers. We formulate the recovering task as a minimization problem involving three terms: (i) the minimax concave (MC) loss function, (ii) the MC penalty function, and (iii) the squared Frobenius norm. The MC-based loss and penalty functions enhance robustness and group sparsity, respectively, while the squared Frobenius norm induces the convexity. The problem is solved, via reformulation, by the primal-dual splitting method, for which the convergence condition is derived. Numerical examples show that the proposed approach enjoys remarkable outlier robustness.