木质素磺酸盐基缓凝剂增稠时间随用量和温度的变化规律

Justin Montgomery, T. McNally, Jay Hunger, S. Subramanian
{"title":"木质素磺酸盐基缓凝剂增稠时间随用量和温度的变化规律","authors":"Justin Montgomery, T. McNally, Jay Hunger, S. Subramanian","doi":"10.2118/204327-ms","DOIUrl":null,"url":null,"abstract":"\n The retardation of class H Portland cement using lignosulfonates was investigated in the temperature range between 54°C and 153°C. Lignosulfonates with varying extent of modification was used in the study, and the optimum retarder dosage and temperature range to achieve desired thickening time was identified for different lignosulfonate types (non-modified, modified and highly modified). In general, a linear thickening response was observed at low retarder dosage, while a near exponential increase in thickening time response was observed at higher dosages.\n Defining the retarder dosage temperature relationship is essential for proper cement slurry design for securing desired placement of cement slurry. A significant finding is that the thickening time responses trend from near linear at low dosages, transitioning to near exponential at higher dosages. The observed results varied depending on the extent of modification performed on the lignosulfonate retarder.\n Pure lignosulfonate retarders produce optimal dosage response from 54°C to 97°C. Modified retarders work best in the range of 97°C to 118°C. While highly modified retarders perform best in the range of 118°C to 153°C. Defining the retarder dosage temperature relationship is essential for proper cement slurry design for securing desired placement of cement slurry.","PeriodicalId":10910,"journal":{"name":"Day 2 Tue, December 07, 2021","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Lignosulfonate Based Retarders for Thickening Time as a Function of Dosage and Temperature\",\"authors\":\"Justin Montgomery, T. McNally, Jay Hunger, S. Subramanian\",\"doi\":\"10.2118/204327-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The retardation of class H Portland cement using lignosulfonates was investigated in the temperature range between 54°C and 153°C. Lignosulfonates with varying extent of modification was used in the study, and the optimum retarder dosage and temperature range to achieve desired thickening time was identified for different lignosulfonate types (non-modified, modified and highly modified). In general, a linear thickening response was observed at low retarder dosage, while a near exponential increase in thickening time response was observed at higher dosages.\\n Defining the retarder dosage temperature relationship is essential for proper cement slurry design for securing desired placement of cement slurry. A significant finding is that the thickening time responses trend from near linear at low dosages, transitioning to near exponential at higher dosages. The observed results varied depending on the extent of modification performed on the lignosulfonate retarder.\\n Pure lignosulfonate retarders produce optimal dosage response from 54°C to 97°C. Modified retarders work best in the range of 97°C to 118°C. While highly modified retarders perform best in the range of 118°C to 153°C. Defining the retarder dosage temperature relationship is essential for proper cement slurry design for securing desired placement of cement slurry.\",\"PeriodicalId\":10910,\"journal\":{\"name\":\"Day 2 Tue, December 07, 2021\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, December 07, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/204327-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, December 07, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204327-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在54 ~ 153℃的温度范围内,研究了木质素磺酸盐对H类硅酸盐水泥的缓凝作用。研究中使用了不同改性程度的木质素磺酸盐,并对不同类型的木质素磺酸盐(未改性、改性和高度改性)确定了达到理想增稠时间的最佳缓凝剂用量和温度范围。一般来说,在低缓凝剂剂量下观察到线性增稠响应,而在高剂量下观察到近指数增长的增稠时间响应。确定缓凝剂掺量与温度的关系对于设计合适的水泥浆以确保水泥浆的理想位置至关重要。一个重要的发现是,增稠时间的响应趋势,从近线性在低剂量,过渡到近指数在高剂量。观察到的结果取决于对木质素磺酸盐缓凝剂进行改性的程度。纯木质素磺酸盐缓凝剂在54°C至97°C范围内产生最佳剂量反应。改性缓速剂在97°C至118°C范围内工作最佳。而高度改性缓凝剂在118 ~ 153℃范围内表现最佳。确定缓凝剂掺量与温度的关系对于设计合适的水泥浆以确保水泥浆的理想位置至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of Lignosulfonate Based Retarders for Thickening Time as a Function of Dosage and Temperature
The retardation of class H Portland cement using lignosulfonates was investigated in the temperature range between 54°C and 153°C. Lignosulfonates with varying extent of modification was used in the study, and the optimum retarder dosage and temperature range to achieve desired thickening time was identified for different lignosulfonate types (non-modified, modified and highly modified). In general, a linear thickening response was observed at low retarder dosage, while a near exponential increase in thickening time response was observed at higher dosages. Defining the retarder dosage temperature relationship is essential for proper cement slurry design for securing desired placement of cement slurry. A significant finding is that the thickening time responses trend from near linear at low dosages, transitioning to near exponential at higher dosages. The observed results varied depending on the extent of modification performed on the lignosulfonate retarder. Pure lignosulfonate retarders produce optimal dosage response from 54°C to 97°C. Modified retarders work best in the range of 97°C to 118°C. While highly modified retarders perform best in the range of 118°C to 153°C. Defining the retarder dosage temperature relationship is essential for proper cement slurry design for securing desired placement of cement slurry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dry Cationic Friction Reducers: New Alternative for High TDS Slickwater Metagenomics Microbial Characterization of Production and Process Fluids in the Powder River Basin: Identification and Sources of Problematic Microorganisms Associated with SWD Facilities Electrochemically Assisted Deposition of Calcium Carbonate Surfaces for Anionic Surfactant Adsorption: Implications for Enhanced Oil Recovery Ranking Anti-Agglomerant Efficiency for Gas Hydrates Through Molecular Dynamic Simulations Seawater Breakthrough Monitoring and Reservoir-Model Improvement Using Natural Boron
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1