{"title":"射频枪和加速腔中射频诱导束流动力学","authors":"K. Floettmann","doi":"10.1103/PHYSREVSTAB.18.064801","DOIUrl":null,"url":null,"abstract":"In this paper, a detailed discussion of the rf-related beam dynamics in rf guns and accelerating cavities is presented. Other rf-gun-related aspects such as space charge and cathode physics are not treated. An effective start phase is introduced in order to yield a better description for the synchronous phase, the energy gain, and the bunch compression factor in gun cavities. Energy spread and longitudinal emittance are treated in a form applicable to guns as well as to accelerating cavities. Discussions on the transverse emittance include the chromatic emittance variation at high emission phases and effects of field asymmetries and combined solenoid-cavity sections.","PeriodicalId":20072,"journal":{"name":"Physical Review Special Topics-accelerators and Beams","volume":"110 1","pages":"064801"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"rf-induced beam dynamics in rf guns and accelerating cavities\",\"authors\":\"K. Floettmann\",\"doi\":\"10.1103/PHYSREVSTAB.18.064801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a detailed discussion of the rf-related beam dynamics in rf guns and accelerating cavities is presented. Other rf-gun-related aspects such as space charge and cathode physics are not treated. An effective start phase is introduced in order to yield a better description for the synchronous phase, the energy gain, and the bunch compression factor in gun cavities. Energy spread and longitudinal emittance are treated in a form applicable to guns as well as to accelerating cavities. Discussions on the transverse emittance include the chromatic emittance variation at high emission phases and effects of field asymmetries and combined solenoid-cavity sections.\",\"PeriodicalId\":20072,\"journal\":{\"name\":\"Physical Review Special Topics-accelerators and Beams\",\"volume\":\"110 1\",\"pages\":\"064801\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Special Topics-accelerators and Beams\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVSTAB.18.064801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Special Topics-accelerators and Beams","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVSTAB.18.064801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
rf-induced beam dynamics in rf guns and accelerating cavities
In this paper, a detailed discussion of the rf-related beam dynamics in rf guns and accelerating cavities is presented. Other rf-gun-related aspects such as space charge and cathode physics are not treated. An effective start phase is introduced in order to yield a better description for the synchronous phase, the energy gain, and the bunch compression factor in gun cavities. Energy spread and longitudinal emittance are treated in a form applicable to guns as well as to accelerating cavities. Discussions on the transverse emittance include the chromatic emittance variation at high emission phases and effects of field asymmetries and combined solenoid-cavity sections.
期刊介绍:
Physical Review Special Topics - Accelerators and Beams (PRST-AB), is a peer reviewed, purely electronic journal, distributed without charge to readers and funded by contributions from national laboratories. It covers the full range of accelerator science and technology: subsystem and component technologies, beam dynamics; accelerator applications; and design, operation, and improvement of accelerators used in science and industry. This includes accelerators for high-energy and nuclear physics, synchrotron radiation production, spallation neutron sources, medical therapy, and intense beam applications.