R. Weibel, M. Olivarius, H. Vosgerau, A. Mathiesen, L. Kristensen, C. M. Nielsen, L. Nielsen
{"title":"丹麦潜在地热储层概述","authors":"R. Weibel, M. Olivarius, H. Vosgerau, A. Mathiesen, L. Kristensen, C. M. Nielsen, L. Nielsen","doi":"10.1017/njg.2020.5","DOIUrl":null,"url":null,"abstract":"Abstract The Danish onshore subsurface contains very large geothermal resources that have the potential to make a significant contribution to transforming Danish energy consumption toward a more sustainable energy mix. Presently, only a minor fraction of this green energy is exploited in three small plants. The main factors that have hampered and delayed larger-scale deployment are related to uncertainties in the geological models, which inevitably lead to high economic risks that are difficult for smaller district heating companies to mitigate without support from a compensation scheme. To facilitate and stimulate much wider use of the Danish geothermal resources, the Geological Survey of Denmark and Greenland (GEUS) and other research institutes have conducted several regional research projects focusing on the geological and geochemical obstacles with the principal objective of reducing the exploration risks by selecting the best geological reservoirs. One of the most important geological factors causing uncertainty is the quality of the reservoirs and their ability to produce the expected volume of warm geothermal brine. Thus, great emphasis has been placed on investigating and understanding the relationships between reservoir sandstone, porosity, permeability, petrography, diagenetic processes and alterations related to variable sediment sources, basin entry points, depositional systems and climate, burial and thermal history. Mesozoic sandstones comprise the most important geothermal reservoirs in Denmark. Details concerning the reservoir quality are compiled and compared for the Lower Triassic Bunter Sandstone, Triassic Skagerrak, Upper Triassic – Lower Jurassic Gassum and Middle Jurassic Haldager Sand formations. The Bunter Sandstone Formation contains extensive aeolian and more confined fluvial sandstones with high porosity and permeability. However, highly saline formation water could be unfavourable. The Skagerrak Formation comprises well-sorted braided stream sandstones in the centre of the basin, and is otherwise characterised by muddy sandstones and alluvial fan conglomerates. An immature mineralogical composition has caused intensive diagenetic changes in the deepest buried parts of the basin. The Gassum Formation consists of shoreface, fluvial and estuarine sandstones interbedded with marine and lacustrine mudstones. In the upper part of the formation, the sandstone beds pinch out into mudstones towards the basin centre. Pervasive siderite- and calcite cement occurs locally in shallowly buried sandstones, and with burial depth the maximum abundances of quartz and ankerite cement increase. Sandstones of shallow burial represent excellent reservoirs. The relatively coarse grain size of the Haldager Sand Formation results in high porosity and permeability even at deep burial, so the formation comprises a high-quality geothermal reservoir. Substantial progress has been made, and a well-established regional geological model combined with reservoir quality is now available for areas with cored wells. This has enabled an improved estimation of reservoir quality between wells for exploration of geothermal reservoirs.","PeriodicalId":49768,"journal":{"name":"Netherlands Journal of Geosciences-Geologie En Mijnbouw","volume":"17 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2020-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Overview of potential geothermal reservoirs in Denmark\",\"authors\":\"R. Weibel, M. Olivarius, H. Vosgerau, A. Mathiesen, L. Kristensen, C. M. Nielsen, L. Nielsen\",\"doi\":\"10.1017/njg.2020.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Danish onshore subsurface contains very large geothermal resources that have the potential to make a significant contribution to transforming Danish energy consumption toward a more sustainable energy mix. Presently, only a minor fraction of this green energy is exploited in three small plants. The main factors that have hampered and delayed larger-scale deployment are related to uncertainties in the geological models, which inevitably lead to high economic risks that are difficult for smaller district heating companies to mitigate without support from a compensation scheme. To facilitate and stimulate much wider use of the Danish geothermal resources, the Geological Survey of Denmark and Greenland (GEUS) and other research institutes have conducted several regional research projects focusing on the geological and geochemical obstacles with the principal objective of reducing the exploration risks by selecting the best geological reservoirs. One of the most important geological factors causing uncertainty is the quality of the reservoirs and their ability to produce the expected volume of warm geothermal brine. Thus, great emphasis has been placed on investigating and understanding the relationships between reservoir sandstone, porosity, permeability, petrography, diagenetic processes and alterations related to variable sediment sources, basin entry points, depositional systems and climate, burial and thermal history. Mesozoic sandstones comprise the most important geothermal reservoirs in Denmark. Details concerning the reservoir quality are compiled and compared for the Lower Triassic Bunter Sandstone, Triassic Skagerrak, Upper Triassic – Lower Jurassic Gassum and Middle Jurassic Haldager Sand formations. The Bunter Sandstone Formation contains extensive aeolian and more confined fluvial sandstones with high porosity and permeability. However, highly saline formation water could be unfavourable. The Skagerrak Formation comprises well-sorted braided stream sandstones in the centre of the basin, and is otherwise characterised by muddy sandstones and alluvial fan conglomerates. An immature mineralogical composition has caused intensive diagenetic changes in the deepest buried parts of the basin. The Gassum Formation consists of shoreface, fluvial and estuarine sandstones interbedded with marine and lacustrine mudstones. In the upper part of the formation, the sandstone beds pinch out into mudstones towards the basin centre. Pervasive siderite- and calcite cement occurs locally in shallowly buried sandstones, and with burial depth the maximum abundances of quartz and ankerite cement increase. Sandstones of shallow burial represent excellent reservoirs. The relatively coarse grain size of the Haldager Sand Formation results in high porosity and permeability even at deep burial, so the formation comprises a high-quality geothermal reservoir. Substantial progress has been made, and a well-established regional geological model combined with reservoir quality is now available for areas with cored wells. This has enabled an improved estimation of reservoir quality between wells for exploration of geothermal reservoirs.\",\"PeriodicalId\":49768,\"journal\":{\"name\":\"Netherlands Journal of Geosciences-Geologie En Mijnbouw\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2020-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Netherlands Journal of Geosciences-Geologie En Mijnbouw\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/njg.2020.5\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Netherlands Journal of Geosciences-Geologie En Mijnbouw","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/njg.2020.5","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Overview of potential geothermal reservoirs in Denmark
Abstract The Danish onshore subsurface contains very large geothermal resources that have the potential to make a significant contribution to transforming Danish energy consumption toward a more sustainable energy mix. Presently, only a minor fraction of this green energy is exploited in three small plants. The main factors that have hampered and delayed larger-scale deployment are related to uncertainties in the geological models, which inevitably lead to high economic risks that are difficult for smaller district heating companies to mitigate without support from a compensation scheme. To facilitate and stimulate much wider use of the Danish geothermal resources, the Geological Survey of Denmark and Greenland (GEUS) and other research institutes have conducted several regional research projects focusing on the geological and geochemical obstacles with the principal objective of reducing the exploration risks by selecting the best geological reservoirs. One of the most important geological factors causing uncertainty is the quality of the reservoirs and their ability to produce the expected volume of warm geothermal brine. Thus, great emphasis has been placed on investigating and understanding the relationships between reservoir sandstone, porosity, permeability, petrography, diagenetic processes and alterations related to variable sediment sources, basin entry points, depositional systems and climate, burial and thermal history. Mesozoic sandstones comprise the most important geothermal reservoirs in Denmark. Details concerning the reservoir quality are compiled and compared for the Lower Triassic Bunter Sandstone, Triassic Skagerrak, Upper Triassic – Lower Jurassic Gassum and Middle Jurassic Haldager Sand formations. The Bunter Sandstone Formation contains extensive aeolian and more confined fluvial sandstones with high porosity and permeability. However, highly saline formation water could be unfavourable. The Skagerrak Formation comprises well-sorted braided stream sandstones in the centre of the basin, and is otherwise characterised by muddy sandstones and alluvial fan conglomerates. An immature mineralogical composition has caused intensive diagenetic changes in the deepest buried parts of the basin. The Gassum Formation consists of shoreface, fluvial and estuarine sandstones interbedded with marine and lacustrine mudstones. In the upper part of the formation, the sandstone beds pinch out into mudstones towards the basin centre. Pervasive siderite- and calcite cement occurs locally in shallowly buried sandstones, and with burial depth the maximum abundances of quartz and ankerite cement increase. Sandstones of shallow burial represent excellent reservoirs. The relatively coarse grain size of the Haldager Sand Formation results in high porosity and permeability even at deep burial, so the formation comprises a high-quality geothermal reservoir. Substantial progress has been made, and a well-established regional geological model combined with reservoir quality is now available for areas with cored wells. This has enabled an improved estimation of reservoir quality between wells for exploration of geothermal reservoirs.
期刊介绍:
Netherlands Journal of Geosciences - Geologie en Mijnbouw is a fully open access journal which publishes papers on all aspects of geoscience, providing they are of international interest and quality. As the official publication of the ''Netherlands Journal of Geosciences'' Foundation the journal publishes new and significant research in geosciences with a regional focus on the Netherlands, the North Sea region and relevant adjacent areas. A wide range of topics within the geosciences are covered in the journal, including "geology, physical geography, geophyics, (geo-)archeology, paleontology, hydro(geo)logy, hydrocarbon exploration, modelling and visualisation."
The journal is a continuation of Geologie and Mijnbouw (published by the Royal Geological and Mining Society of the Netherlands, KNGMG) and Mededelingen Nederlands Instituut voor Toegepaste Geowetenschappen (published by TNO Geological Survey of the Netherlands). The journal is published in full colour.