基于U-Net的增材制造缺陷分割

Vivian Wen Hui Wong, M. Ferguson, K. Law, Y. T. Lee, P. Witherell
{"title":"基于U-Net的增材制造缺陷分割","authors":"Vivian Wen Hui Wong, M. Ferguson, K. Law, Y. T. Lee, P. Witherell","doi":"10.1115/detc2021-68885","DOIUrl":null,"url":null,"abstract":"\n Additive manufacturing (AM) provides design flexibility and allows rapid fabrications of parts with complex geometries. The presence of internal defects, however, can lead to deficit performance of the fabricated part. X-ray Computed Tomography (XCT) is a non-destructive inspection technique often used for AM parts. Although defects within AM specimens can be identified and segmented by manually thresholding the XCT images, the process can be tedious and inefficient, and the segmentation results can be ambiguous. The variation in the shapes and appearances of defects also poses difficulty in accurately segmenting defects. This paper describes an automatic defect segmentation method using U-Net based deep convolutional neural network (CNN) architectures. Several models of U-Net variants are trained and validated on an AM XCT image dataset containing pores and cracks, achieving a best mean intersection over union (IOU) value of 0.993. Performance of various U-Net models is compared and analyzed. Specific to AM porosity segmentation with XCT images, several techniques in data augmentation and model development are introduced. This work demonstrates that, using XCT images, U-Net can be effectively applied for automatic segmentation of AM porosity with high accuracy. The method can potentially help improve quality control of AM parts in an industry setting.","PeriodicalId":23602,"journal":{"name":"Volume 2: 41st Computers and Information in Engineering Conference (CIE)","volume":"95 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Segmentation of Additive Manufacturing Defects Using U-Net\",\"authors\":\"Vivian Wen Hui Wong, M. Ferguson, K. Law, Y. T. Lee, P. Witherell\",\"doi\":\"10.1115/detc2021-68885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Additive manufacturing (AM) provides design flexibility and allows rapid fabrications of parts with complex geometries. The presence of internal defects, however, can lead to deficit performance of the fabricated part. X-ray Computed Tomography (XCT) is a non-destructive inspection technique often used for AM parts. Although defects within AM specimens can be identified and segmented by manually thresholding the XCT images, the process can be tedious and inefficient, and the segmentation results can be ambiguous. The variation in the shapes and appearances of defects also poses difficulty in accurately segmenting defects. This paper describes an automatic defect segmentation method using U-Net based deep convolutional neural network (CNN) architectures. Several models of U-Net variants are trained and validated on an AM XCT image dataset containing pores and cracks, achieving a best mean intersection over union (IOU) value of 0.993. Performance of various U-Net models is compared and analyzed. Specific to AM porosity segmentation with XCT images, several techniques in data augmentation and model development are introduced. This work demonstrates that, using XCT images, U-Net can be effectively applied for automatic segmentation of AM porosity with high accuracy. The method can potentially help improve quality control of AM parts in an industry setting.\",\"PeriodicalId\":23602,\"journal\":{\"name\":\"Volume 2: 41st Computers and Information in Engineering Conference (CIE)\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: 41st Computers and Information in Engineering Conference (CIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2021-68885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: 41st Computers and Information in Engineering Conference (CIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2021-68885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

增材制造(AM)提供了设计灵活性,并允许快速制造具有复杂几何形状的零件。然而,内部缺陷的存在会导致制造零件的性能缺陷。x射线计算机断层扫描(XCT)是一种常用于增材制造零件的无损检测技术。虽然可以通过手动阈值分割XCT图像来识别和分割AM样品中的缺陷,但该过程繁琐且效率低下,并且分割结果可能不明确。缺陷形状和外观的变化也给准确分割缺陷带来了困难。本文描述了一种基于U-Net的深度卷积神经网络(CNN)结构的缺陷自动分割方法。在包含孔隙和裂缝的AM XCT图像数据集上训练和验证了多个U-Net变量模型,获得了最佳平均IOU值0.993。对各种U-Net模型的性能进行了比较和分析。针对用XCT图像分割AM孔隙度的问题,介绍了数据增强和模型开发的几种技术。研究表明,利用XCT图像,U-Net可以有效地实现AM孔隙度的高精度自动分割。该方法可能有助于在工业环境中提高增材制造零件的质量控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Segmentation of Additive Manufacturing Defects Using U-Net
Additive manufacturing (AM) provides design flexibility and allows rapid fabrications of parts with complex geometries. The presence of internal defects, however, can lead to deficit performance of the fabricated part. X-ray Computed Tomography (XCT) is a non-destructive inspection technique often used for AM parts. Although defects within AM specimens can be identified and segmented by manually thresholding the XCT images, the process can be tedious and inefficient, and the segmentation results can be ambiguous. The variation in the shapes and appearances of defects also poses difficulty in accurately segmenting defects. This paper describes an automatic defect segmentation method using U-Net based deep convolutional neural network (CNN) architectures. Several models of U-Net variants are trained and validated on an AM XCT image dataset containing pores and cracks, achieving a best mean intersection over union (IOU) value of 0.993. Performance of various U-Net models is compared and analyzed. Specific to AM porosity segmentation with XCT images, several techniques in data augmentation and model development are introduced. This work demonstrates that, using XCT images, U-Net can be effectively applied for automatic segmentation of AM porosity with high accuracy. The method can potentially help improve quality control of AM parts in an industry setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Bus Factor in Conceptual System Design: Protecting a Design Process Against Major Regional and World Events Exploration of the Digital Innovation Process in the Smart Product-Service System Optimized Torque Assistance During Walking With an Idealized Hip Exoskeleton An Algorithm for Partitioning Objects Into a Cube Skeleton and Segmented Shell Covers for Parallelized Additive Manufacturing Neurocognitive Effects of Incentivizing Students to Improve Performance Through Repeat Attempts in Design Settings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1