R. Kapitza, J. Behl, C. Cachin, T. Distler, Simon Kuhnle, Seyed Vahid Mohammadi, Wolfgang Schröder-Preikschat, Klaus Stengel
{"title":"CheapBFT:资源高效拜占庭式容错","authors":"R. Kapitza, J. Behl, C. Cachin, T. Distler, Simon Kuhnle, Seyed Vahid Mohammadi, Wolfgang Schröder-Preikschat, Klaus Stengel","doi":"10.1145/2168836.2168866","DOIUrl":null,"url":null,"abstract":"One of the main reasons why Byzantine fault-tolerant (BFT) systems are not widely used lies in their high resource consumption: 3f+1 replicas are necessary to tolerate only f faults. Recent works have been able to reduce the minimum number of replicas to 2f+1 by relying on a trusted subsystem that prevents a replica from making conflicting statements to other replicas without being detected. Nevertheless, having been designed with the focus on fault handling, these systems still employ a majority of replicas during normal-case operation for seemingly redundant work. Furthermore, the trusted subsystems available trade off performance for security; that is, they either achieve high throughput or they come with a small trusted computing base.\n This paper presents CheapBFT, a BFT system that, for the first time, tolerates that all but one of the replicas active in normal-case operation become faulty. CheapBFT runs a composite agreement protocol and exploits passive replication to save resources; in the absence of faults, it requires that only f+1 replicas actively agree on client requests and execute them. In case of suspected faulty behavior, CheapBFT triggers a transition protocol that activates f extra passive replicas and brings all non-faulty replicas into a consistent state again. This approach, for example, allows the system to safely switch to another, more resilient agreement protocol. CheapBFT relies on an FPGA-based trusted subsystem for the authentication of protocol messages that provides high performance and comprises a small trusted computing base.","PeriodicalId":20737,"journal":{"name":"Proceedings of the Eleventh European Conference on Computer Systems","volume":"35 1","pages":"295-308"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"223","resultStr":"{\"title\":\"CheapBFT: resource-efficient byzantine fault tolerance\",\"authors\":\"R. Kapitza, J. Behl, C. Cachin, T. Distler, Simon Kuhnle, Seyed Vahid Mohammadi, Wolfgang Schröder-Preikschat, Klaus Stengel\",\"doi\":\"10.1145/2168836.2168866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the main reasons why Byzantine fault-tolerant (BFT) systems are not widely used lies in their high resource consumption: 3f+1 replicas are necessary to tolerate only f faults. Recent works have been able to reduce the minimum number of replicas to 2f+1 by relying on a trusted subsystem that prevents a replica from making conflicting statements to other replicas without being detected. Nevertheless, having been designed with the focus on fault handling, these systems still employ a majority of replicas during normal-case operation for seemingly redundant work. Furthermore, the trusted subsystems available trade off performance for security; that is, they either achieve high throughput or they come with a small trusted computing base.\\n This paper presents CheapBFT, a BFT system that, for the first time, tolerates that all but one of the replicas active in normal-case operation become faulty. CheapBFT runs a composite agreement protocol and exploits passive replication to save resources; in the absence of faults, it requires that only f+1 replicas actively agree on client requests and execute them. In case of suspected faulty behavior, CheapBFT triggers a transition protocol that activates f extra passive replicas and brings all non-faulty replicas into a consistent state again. This approach, for example, allows the system to safely switch to another, more resilient agreement protocol. CheapBFT relies on an FPGA-based trusted subsystem for the authentication of protocol messages that provides high performance and comprises a small trusted computing base.\",\"PeriodicalId\":20737,\"journal\":{\"name\":\"Proceedings of the Eleventh European Conference on Computer Systems\",\"volume\":\"35 1\",\"pages\":\"295-308\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"223\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Eleventh European Conference on Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2168836.2168866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh European Conference on Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2168836.2168866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
One of the main reasons why Byzantine fault-tolerant (BFT) systems are not widely used lies in their high resource consumption: 3f+1 replicas are necessary to tolerate only f faults. Recent works have been able to reduce the minimum number of replicas to 2f+1 by relying on a trusted subsystem that prevents a replica from making conflicting statements to other replicas without being detected. Nevertheless, having been designed with the focus on fault handling, these systems still employ a majority of replicas during normal-case operation for seemingly redundant work. Furthermore, the trusted subsystems available trade off performance for security; that is, they either achieve high throughput or they come with a small trusted computing base.
This paper presents CheapBFT, a BFT system that, for the first time, tolerates that all but one of the replicas active in normal-case operation become faulty. CheapBFT runs a composite agreement protocol and exploits passive replication to save resources; in the absence of faults, it requires that only f+1 replicas actively agree on client requests and execute them. In case of suspected faulty behavior, CheapBFT triggers a transition protocol that activates f extra passive replicas and brings all non-faulty replicas into a consistent state again. This approach, for example, allows the system to safely switch to another, more resilient agreement protocol. CheapBFT relies on an FPGA-based trusted subsystem for the authentication of protocol messages that provides high performance and comprises a small trusted computing base.