{"title":"热气候条件下足球场屋面结构对风热环境影响的研究","authors":"Sam Bonser, B. Hughes, J. Calautit","doi":"10.1080/14733315.2019.1665861","DOIUrl":null,"url":null,"abstract":"Abstract The present study provides an analysis of existing literature encompassing the wind and thermal analysis of football stadia, and how both can be manipulated through the modification of roof geometry. It introduces the potential for cooling strategies to create an internal environment capable of hosting elite-level international football in a hot climate. The motivation for the study stems from an absence of existing literature focussing on thermal flow in hot conditions for stadia and the requirement to investigate the hosting capabilities of Qatar for the 2022 FIFA World Cup. Stadium design plays a crucial role in determining the success of the tournament not only through the month-long event, but also with the legacy it leaves afterwards. To carry out the analysis, Computational Fluid Dynamics (CFD) simulations were conducted in an effort to produce internal conditions that satisfy official FIFA guidelines on optimal playing conditions in terms of wind and temperature distribution. These are ran on a model validated against existing literature to ensure accuracy, but considering the potential for error between model generations. The conclusions drawn suggest that a downward-pitched, large-radius retractable roof subsidised by the introduction of a mechanical system to create a cooling strategy reduces the external temperature down to 23 °C, with wind velocities not exceeding 4 m/s. Reinforced by results, these desired playing conditions can be achieved by closing the roof to precondition the stadium before an event, with the roof then retracted to ensure compliance with FIFA guidelines. The results from the present study can be a component in achieving a sustained positive legacy for the upcoming FIFA World Cup.","PeriodicalId":55613,"journal":{"name":"International Journal of Ventilation","volume":"23 1","pages":"260 - 279"},"PeriodicalIF":1.1000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Investigation of the impact of roof configurations on the wind and thermal environment in football stadiums in hot climates\",\"authors\":\"Sam Bonser, B. Hughes, J. Calautit\",\"doi\":\"10.1080/14733315.2019.1665861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The present study provides an analysis of existing literature encompassing the wind and thermal analysis of football stadia, and how both can be manipulated through the modification of roof geometry. It introduces the potential for cooling strategies to create an internal environment capable of hosting elite-level international football in a hot climate. The motivation for the study stems from an absence of existing literature focussing on thermal flow in hot conditions for stadia and the requirement to investigate the hosting capabilities of Qatar for the 2022 FIFA World Cup. Stadium design plays a crucial role in determining the success of the tournament not only through the month-long event, but also with the legacy it leaves afterwards. To carry out the analysis, Computational Fluid Dynamics (CFD) simulations were conducted in an effort to produce internal conditions that satisfy official FIFA guidelines on optimal playing conditions in terms of wind and temperature distribution. These are ran on a model validated against existing literature to ensure accuracy, but considering the potential for error between model generations. The conclusions drawn suggest that a downward-pitched, large-radius retractable roof subsidised by the introduction of a mechanical system to create a cooling strategy reduces the external temperature down to 23 °C, with wind velocities not exceeding 4 m/s. Reinforced by results, these desired playing conditions can be achieved by closing the roof to precondition the stadium before an event, with the roof then retracted to ensure compliance with FIFA guidelines. The results from the present study can be a component in achieving a sustained positive legacy for the upcoming FIFA World Cup.\",\"PeriodicalId\":55613,\"journal\":{\"name\":\"International Journal of Ventilation\",\"volume\":\"23 1\",\"pages\":\"260 - 279\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Ventilation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/14733315.2019.1665861\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Ventilation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14733315.2019.1665861","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Investigation of the impact of roof configurations on the wind and thermal environment in football stadiums in hot climates
Abstract The present study provides an analysis of existing literature encompassing the wind and thermal analysis of football stadia, and how both can be manipulated through the modification of roof geometry. It introduces the potential for cooling strategies to create an internal environment capable of hosting elite-level international football in a hot climate. The motivation for the study stems from an absence of existing literature focussing on thermal flow in hot conditions for stadia and the requirement to investigate the hosting capabilities of Qatar for the 2022 FIFA World Cup. Stadium design plays a crucial role in determining the success of the tournament not only through the month-long event, but also with the legacy it leaves afterwards. To carry out the analysis, Computational Fluid Dynamics (CFD) simulations were conducted in an effort to produce internal conditions that satisfy official FIFA guidelines on optimal playing conditions in terms of wind and temperature distribution. These are ran on a model validated against existing literature to ensure accuracy, but considering the potential for error between model generations. The conclusions drawn suggest that a downward-pitched, large-radius retractable roof subsidised by the introduction of a mechanical system to create a cooling strategy reduces the external temperature down to 23 °C, with wind velocities not exceeding 4 m/s. Reinforced by results, these desired playing conditions can be achieved by closing the roof to precondition the stadium before an event, with the roof then retracted to ensure compliance with FIFA guidelines. The results from the present study can be a component in achieving a sustained positive legacy for the upcoming FIFA World Cup.
期刊介绍:
This is a peer reviewed journal aimed at providing the latest information on research and application.
Topics include:
• New ideas concerned with the development or application of ventilation;
• Validated case studies demonstrating the performance of ventilation strategies;
• Information on needs and solutions for specific building types including: offices, dwellings, schools, hospitals, parking garages, urban buildings and recreational buildings etc;
• Developments in numerical methods;
• Measurement techniques;
• Related issues in which the impact of ventilation plays an important role (e.g. the interaction of ventilation with air quality, health and comfort);
• Energy issues related to ventilation (e.g. low energy systems, ventilation heating and cooling loss);
• Driving forces (weather data, fan performance etc).