Razumikhin和Krasovskii安全稳定方法

W. Ren, R. Jungers, Dimos V. Dimarogonas
{"title":"Razumikhin和Krasovskii安全稳定方法","authors":"W. Ren, R. Jungers, Dimos V. Dimarogonas","doi":"10.48550/arXiv.2204.12106","DOIUrl":null,"url":null,"abstract":"This paper studies the stabilization and safety problems of nonlinear time-delay systems. Following both Razumikhin and Krasovskii approaches, we propose novel control Lyapunov functions/functionals for the stabilization problem and novel control barrier functions/functionals for the safety problem. The proposed control Lyapunov and barrier functions/functionals extend the existing ones from the delay-free case to the time-delay case, and allow for designing the stabilizing and safety controllers in closed-form. Since analytical solutions to time-delay optimal control problems are hard to be achieved, a sliding mode control based approach is developed to merge the proposed control Lyapunov and barrier functions/functionals. Based on the sliding surface functional, a feedback control law is established to investigate the stabilization and safety objectives simultaneously. In particular, the properties of the sliding surface functional are analyzed, and further how to construct the sliding surface functional is discussed. Finally, the proposed approaches are illustrated via two numerical examples from the connected cruise control problem of automotive systems and the synchronization problem of multi-agent systems.","PeriodicalId":13196,"journal":{"name":"IEEE Robotics Autom. Mag.","volume":"17 1","pages":"110563"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Razumikhin and Krasovskii Approaches for Safe Stabilization\",\"authors\":\"W. Ren, R. Jungers, Dimos V. Dimarogonas\",\"doi\":\"10.48550/arXiv.2204.12106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the stabilization and safety problems of nonlinear time-delay systems. Following both Razumikhin and Krasovskii approaches, we propose novel control Lyapunov functions/functionals for the stabilization problem and novel control barrier functions/functionals for the safety problem. The proposed control Lyapunov and barrier functions/functionals extend the existing ones from the delay-free case to the time-delay case, and allow for designing the stabilizing and safety controllers in closed-form. Since analytical solutions to time-delay optimal control problems are hard to be achieved, a sliding mode control based approach is developed to merge the proposed control Lyapunov and barrier functions/functionals. Based on the sliding surface functional, a feedback control law is established to investigate the stabilization and safety objectives simultaneously. In particular, the properties of the sliding surface functional are analyzed, and further how to construct the sliding surface functional is discussed. Finally, the proposed approaches are illustrated via two numerical examples from the connected cruise control problem of automotive systems and the synchronization problem of multi-agent systems.\",\"PeriodicalId\":13196,\"journal\":{\"name\":\"IEEE Robotics Autom. Mag.\",\"volume\":\"17 1\",\"pages\":\"110563\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics Autom. Mag.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2204.12106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics Autom. Mag.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.12106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

研究了非线性时滞系统的镇定与安全问题。在Razumikhin和Krasovskii方法的基础上,我们提出了针对稳定问题的新型控制Lyapunov函数/泛函和针对安全问题的新型控制barrier函数/泛函。所提出的控制李雅普诺夫函数和障碍函数/函数将现有的无延迟情况扩展到时滞情况,并允许以封闭形式设计稳定和安全控制器。由于时滞最优控制问题的解析解难以实现,因此开发了一种基于滑模控制的方法来合并所提出的李雅普诺夫控制和障碍函数/泛函。基于滑动面泛函,建立了反馈控制律,同时研究了系统的稳定和安全目标。特别分析了滑动面泛函的性质,并进一步讨论了如何构造滑动面泛函。最后,通过汽车系统的连接巡航控制问题和多智能体系统的同步问题的两个数值实例说明了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Razumikhin and Krasovskii Approaches for Safe Stabilization
This paper studies the stabilization and safety problems of nonlinear time-delay systems. Following both Razumikhin and Krasovskii approaches, we propose novel control Lyapunov functions/functionals for the stabilization problem and novel control barrier functions/functionals for the safety problem. The proposed control Lyapunov and barrier functions/functionals extend the existing ones from the delay-free case to the time-delay case, and allow for designing the stabilizing and safety controllers in closed-form. Since analytical solutions to time-delay optimal control problems are hard to be achieved, a sliding mode control based approach is developed to merge the proposed control Lyapunov and barrier functions/functionals. Based on the sliding surface functional, a feedback control law is established to investigate the stabilization and safety objectives simultaneously. In particular, the properties of the sliding surface functional are analyzed, and further how to construct the sliding surface functional is discussed. Finally, the proposed approaches are illustrated via two numerical examples from the connected cruise control problem of automotive systems and the synchronization problem of multi-agent systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Auction algorithm sensitivity for multi-robot task allocation Sensor Selection for Remote State Estimation with QoS Requirement Constraints Industry 4.0: What's Next? [Young Professionals] Becoming a Plenary or Keynote Speaker in an International Robotics Conference: Perspectives From an IEEE RAS Women in Engineering Panel [Women in Engineering] Industry 4.0: Opinion of a Roboticist on Machine Learning [Student's Corner]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1