基于spt的多基因遗传规划估计土壤液化潜力的概率方法

IF 0.5 Q4 ENGINEERING, GEOLOGICAL International Journal of Geotechnical Earthquake Engineering Pub Date : 2013-01-01 DOI:10.4018/JGEE.2013010103
P. K. Muduli, Sarath Das
{"title":"基于spt的多基因遗传规划估计土壤液化潜力的概率方法","authors":"P. K. Muduli, Sarath Das","doi":"10.4018/JGEE.2013010103","DOIUrl":null,"url":null,"abstract":"The present study discusses about evaluation of liquefaction potential of soil within a probabilistic framework based on the standard penetration test (SPT) dataset using evolutionary artificial intelligence technique, multi-gene genetic programming (MGGP). Based on the developed limit state function, a relationship is given between probability of liquefaction and factor of safety against liquefaction using Bayesian theory. This Bayesian mapping function is further used to develop a probabiliy based design chart for evaluation of liquefaction potential of soil. Using an independent database the efficacy of present MGGP based probabilistic model is compared with the available artificial neural network (ANN) and statistical models in terms of rate of successful prediction of liquefaction and non-liquefaction cases. The proposed MGGP based model is found to be more accurate compared to other models.","PeriodicalId":42473,"journal":{"name":"International Journal of Geotechnical Earthquake Engineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"SPT-Based Probabilistic Method for Evaluation of Liquefaction Potential of Soil Using Multi-Gene Genetic Programming\",\"authors\":\"P. K. Muduli, Sarath Das\",\"doi\":\"10.4018/JGEE.2013010103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study discusses about evaluation of liquefaction potential of soil within a probabilistic framework based on the standard penetration test (SPT) dataset using evolutionary artificial intelligence technique, multi-gene genetic programming (MGGP). Based on the developed limit state function, a relationship is given between probability of liquefaction and factor of safety against liquefaction using Bayesian theory. This Bayesian mapping function is further used to develop a probabiliy based design chart for evaluation of liquefaction potential of soil. Using an independent database the efficacy of present MGGP based probabilistic model is compared with the available artificial neural network (ANN) and statistical models in terms of rate of successful prediction of liquefaction and non-liquefaction cases. The proposed MGGP based model is found to be more accurate compared to other models.\",\"PeriodicalId\":42473,\"journal\":{\"name\":\"International Journal of Geotechnical Earthquake Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Geotechnical Earthquake Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/JGEE.2013010103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geotechnical Earthquake Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/JGEE.2013010103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 10

摘要

本研究利用进化人工智能技术——多基因遗传规划(MGGP),在基于标准渗透测试(SPT)数据集的概率框架下,讨论了土壤液化潜力的评估。在建立极限状态函数的基础上,利用贝叶斯理论给出了液化概率与抗液化安全系数之间的关系。该贝叶斯映射函数进一步用于开发基于概率的设计图,用于评估土壤的液化潜力。利用独立数据库,比较了基于MGGP的概率模型与现有的人工神经网络(ANN)和统计模型在液化和非液化情况预测成功率方面的有效性。与其他模型相比,本文提出的基于MGGP的模型精度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SPT-Based Probabilistic Method for Evaluation of Liquefaction Potential of Soil Using Multi-Gene Genetic Programming
The present study discusses about evaluation of liquefaction potential of soil within a probabilistic framework based on the standard penetration test (SPT) dataset using evolutionary artificial intelligence technique, multi-gene genetic programming (MGGP). Based on the developed limit state function, a relationship is given between probability of liquefaction and factor of safety against liquefaction using Bayesian theory. This Bayesian mapping function is further used to develop a probabiliy based design chart for evaluation of liquefaction potential of soil. Using an independent database the efficacy of present MGGP based probabilistic model is compared with the available artificial neural network (ANN) and statistical models in terms of rate of successful prediction of liquefaction and non-liquefaction cases. The proposed MGGP based model is found to be more accurate compared to other models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
25.00%
发文量
11
期刊最新文献
Liquefaction Behavior of Typical River Channel Deposit in Kolkata City Higher-Order Finite Element Vibration Analysis of Circular Raft on Winkler Foundation Behavior of Low Height Embankment Under Earthquake Loading Application of artificial intelligence techniques in slope stability analysis A short review and future prospects Numerical Modeling of Quaternary Sediment Amplification. Basin Size, ASCE Site Class and Fault Location
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1