单铁原子材料中催化中心的电子和结构动力学鉴定

Xuning Li, Chang Chang, Sung-Fu Hung, Ying-Rui Lu, Weizheng Cai, A. Rykov, S. Miao, S. Xi, Hongbin Yang, Zehua Hu, Junhu Wang, Jiyong Zhao, E. Alp, W. Xu, T. Chan, Hao Ming Chen, Q. Xiong, Hai Xiao, Yanqiang Huang, Jun Li, Tao Zhang, Bin Liu
{"title":"单铁原子材料中催化中心的电子和结构动力学鉴定","authors":"Xuning Li, Chang Chang, Sung-Fu Hung, Ying-Rui Lu, Weizheng Cai, A. Rykov, S. Miao, S. Xi, Hongbin Yang, Zehua Hu, Junhu Wang, Jiyong Zhao, E. Alp, W. Xu, T. Chan, Hao Ming Chen, Q. Xiong, Hai Xiao, Yanqiang Huang, Jun Li, Tao Zhang, Bin Liu","doi":"10.2139/ssrn.3713498","DOIUrl":null,"url":null,"abstract":"Summary The lack of model single-atom catalysts (SACs) and atomic-resolution operando spectroscopic techniques greatly limits our comprehension of the nature of catalysis. Herein, based on the designed model single-Fe-atom catalysts with well-controlled microenvironments, we have explored the exact structure of catalytic centers and provided insights into a spin-crossover-involved mechanism for oxygen reduction reaction (ORR) using operando Raman, X-ray absorption spectroscopies, and the developed operando 57Fe Mossbauer spectroscopy. In combination with theoretical studies, the N-FeN4C10 moiety is evidenced as a more active site for ORR. Moreover, the potential-relevant dynamic cycles of both geometric structure and electronic configuration of reactive single-Fe-atom moieties are evidenced via capturing the peroxido (∗O2−) and hydroxyl (∗OH−) intermediates under in situ ORR conditions. We anticipate that the integration of operando techniques and SACs in this work shall shed some light on the electronic-level insight into the catalytic centers and underlying reaction mechanism.","PeriodicalId":10592,"journal":{"name":"Computational & Theoretical Chemistry eJournal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"142","resultStr":"{\"title\":\"Identification of the Electronic and Structural Dynamics of Catalytic Centers in Single-Fe-Atom Material\",\"authors\":\"Xuning Li, Chang Chang, Sung-Fu Hung, Ying-Rui Lu, Weizheng Cai, A. Rykov, S. Miao, S. Xi, Hongbin Yang, Zehua Hu, Junhu Wang, Jiyong Zhao, E. Alp, W. Xu, T. Chan, Hao Ming Chen, Q. Xiong, Hai Xiao, Yanqiang Huang, Jun Li, Tao Zhang, Bin Liu\",\"doi\":\"10.2139/ssrn.3713498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary The lack of model single-atom catalysts (SACs) and atomic-resolution operando spectroscopic techniques greatly limits our comprehension of the nature of catalysis. Herein, based on the designed model single-Fe-atom catalysts with well-controlled microenvironments, we have explored the exact structure of catalytic centers and provided insights into a spin-crossover-involved mechanism for oxygen reduction reaction (ORR) using operando Raman, X-ray absorption spectroscopies, and the developed operando 57Fe Mossbauer spectroscopy. In combination with theoretical studies, the N-FeN4C10 moiety is evidenced as a more active site for ORR. Moreover, the potential-relevant dynamic cycles of both geometric structure and electronic configuration of reactive single-Fe-atom moieties are evidenced via capturing the peroxido (∗O2−) and hydroxyl (∗OH−) intermediates under in situ ORR conditions. We anticipate that the integration of operando techniques and SACs in this work shall shed some light on the electronic-level insight into the catalytic centers and underlying reaction mechanism.\",\"PeriodicalId\":10592,\"journal\":{\"name\":\"Computational & Theoretical Chemistry eJournal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"142\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational & Theoretical Chemistry eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3713498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational & Theoretical Chemistry eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3713498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 142

摘要

模型单原子催化剂(SACs)和原子分辨率操作光谱技术的缺乏极大地限制了我们对催化性质的理解。本文基于设计的单铁原子催化剂微环境控制模型,利用operando拉曼光谱、x射线吸收光谱和已开发的operando 57Fe穆斯鲍尔光谱,探索了催化中心的确切结构,并对氧还原反应(ORR)的自旋交叉参与机理进行了深入研究。结合理论研究,N-FeN4C10片段被证明是ORR更活跃的位点。此外,在原位ORR条件下,通过捕获过氧化物(∗O2−)和羟基(∗OH−)中间体,证明了活性单铁原子部分的几何结构和电子构型的电位相关动态循环。我们预计,在这项工作中,operando技术和SACs的结合将有助于在电子水平上了解催化中心和潜在的反应机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of the Electronic and Structural Dynamics of Catalytic Centers in Single-Fe-Atom Material
Summary The lack of model single-atom catalysts (SACs) and atomic-resolution operando spectroscopic techniques greatly limits our comprehension of the nature of catalysis. Herein, based on the designed model single-Fe-atom catalysts with well-controlled microenvironments, we have explored the exact structure of catalytic centers and provided insights into a spin-crossover-involved mechanism for oxygen reduction reaction (ORR) using operando Raman, X-ray absorption spectroscopies, and the developed operando 57Fe Mossbauer spectroscopy. In combination with theoretical studies, the N-FeN4C10 moiety is evidenced as a more active site for ORR. Moreover, the potential-relevant dynamic cycles of both geometric structure and electronic configuration of reactive single-Fe-atom moieties are evidenced via capturing the peroxido (∗O2−) and hydroxyl (∗OH−) intermediates under in situ ORR conditions. We anticipate that the integration of operando techniques and SACs in this work shall shed some light on the electronic-level insight into the catalytic centers and underlying reaction mechanism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Arduino Weighing Machine Using Load Cell and HX711 Module Noble Gas Bubbles in Bcc Metals: Ab Initio-Based Theory and Kinetic Monte Carlo Modeling Single-Molecule Charge Transport in Discrete, π-Stacked Pyridinium Dimers High Variability of Surface Free Energy and Zeta Potential of Volcanic Particles: Implications for Deposit Stability Identification of the Electronic and Structural Dynamics of Catalytic Centers in Single-Fe-Atom Material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1