基于人工智能的结肠镜临床决策支持系统

D. Mtvralashvili, D. Shakhmatov, A. Likutov, A. G. Zapolsky, D. I. Suslova, A. Borodinov, O. Sushkov, S. Achkasov
{"title":"基于人工智能的结肠镜临床决策支持系统","authors":"D. Mtvralashvili, D. Shakhmatov, A. Likutov, A. G. Zapolsky, D. I. Suslova, A. Borodinov, O. Sushkov, S. Achkasov","doi":"10.33878/2073-7556-2023-22-2-92-102","DOIUrl":null,"url":null,"abstract":"AIM: to estimate the implementation of the original method that uses artificial intelligence (AI) to detect colorectal neoplasms.MATERIALS AND METHODS: we selected 1070 colonoscopy videos from our archive with 5 types of lesions: hyperplastic polyp, serrated adenoma, adenoma with low-grade dysplasia, adenoma with high-grade dysplasia and invasive cancer. Then 9838 informative frames were selected, including 6543 with neoplasms. Lesions were annotated to obtain data set that was finally used for training a convolution al neural network (YOLOv5).RESULTS: the trained algorithm is able to detect neoplasms with an accuracy of 83.2% and a sensitivity of 77.2% on a test sample of the dataset. The most common algorithm errors were revealed and analyzed.CONCLUSION: the obtained data set provided an AI-based algorithm that can detect colorectal neoplasms in the video stream of a colonoscopy recording. Further development of the technology probably will provide creation of a clinical decision support system in colonoscopy.","PeriodicalId":17840,"journal":{"name":"Koloproktologia","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-based algorithm for clinical decision support system in colonoscopy\",\"authors\":\"D. Mtvralashvili, D. Shakhmatov, A. Likutov, A. G. Zapolsky, D. I. Suslova, A. Borodinov, O. Sushkov, S. Achkasov\",\"doi\":\"10.33878/2073-7556-2023-22-2-92-102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AIM: to estimate the implementation of the original method that uses artificial intelligence (AI) to detect colorectal neoplasms.MATERIALS AND METHODS: we selected 1070 colonoscopy videos from our archive with 5 types of lesions: hyperplastic polyp, serrated adenoma, adenoma with low-grade dysplasia, adenoma with high-grade dysplasia and invasive cancer. Then 9838 informative frames were selected, including 6543 with neoplasms. Lesions were annotated to obtain data set that was finally used for training a convolution al neural network (YOLOv5).RESULTS: the trained algorithm is able to detect neoplasms with an accuracy of 83.2% and a sensitivity of 77.2% on a test sample of the dataset. The most common algorithm errors were revealed and analyzed.CONCLUSION: the obtained data set provided an AI-based algorithm that can detect colorectal neoplasms in the video stream of a colonoscopy recording. Further development of the technology probably will provide creation of a clinical decision support system in colonoscopy.\",\"PeriodicalId\":17840,\"journal\":{\"name\":\"Koloproktologia\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Koloproktologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33878/2073-7556-2023-22-2-92-102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Koloproktologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33878/2073-7556-2023-22-2-92-102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:评估使用人工智能(AI)检测结直肠肿瘤的原始方法的实施情况。材料和方法:我们从我们的档案中选择了1070个结肠镜检查视频,其中包括5种病变:增生性息肉、锯状腺瘤、低级别非典型增生腺瘤、高级别非典型增生腺瘤和浸润性癌。然后选择9838个信息帧,其中6543个包含肿瘤。对病灶进行注释以获得最终用于训练卷积神经网络(YOLOv5)的数据集。结果:训练后的算法能够在数据集的测试样本上检测肿瘤,准确率为83.2%,灵敏度为77.2%。揭示并分析了最常见的算法错误。结论:获得的数据集提供了一种基于人工智能的算法,可以在结肠镜检查记录的视频流中检测结直肠肿瘤。该技术的进一步发展可能会为结肠镜检查提供临床决策支持系统的创建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AI-based algorithm for clinical decision support system in colonoscopy
AIM: to estimate the implementation of the original method that uses artificial intelligence (AI) to detect colorectal neoplasms.MATERIALS AND METHODS: we selected 1070 colonoscopy videos from our archive with 5 types of lesions: hyperplastic polyp, serrated adenoma, adenoma with low-grade dysplasia, adenoma with high-grade dysplasia and invasive cancer. Then 9838 informative frames were selected, including 6543 with neoplasms. Lesions were annotated to obtain data set that was finally used for training a convolution al neural network (YOLOv5).RESULTS: the trained algorithm is able to detect neoplasms with an accuracy of 83.2% and a sensitivity of 77.2% on a test sample of the dataset. The most common algorithm errors were revealed and analyzed.CONCLUSION: the obtained data set provided an AI-based algorithm that can detect colorectal neoplasms in the video stream of a colonoscopy recording. Further development of the technology probably will provide creation of a clinical decision support system in colonoscopy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
期刊最新文献
In the memory of professor Aleksandr S. Ermolov (90th birth remembrance) COMMENTS Vadim V. Polovinkin, Artem V. Volkov, Maria S. Yakovenko, Anna I. Demina The difficulties of differential diagnosis of Crohn’s disease and metastatic breast cancer (case report) COMMENTS Igor V. Matveev, Mikhail A. Danilov, Alexander V. Klimashevich, Arif K. Aallakhverdiev, Alexander V. Maksimenko, Anastasia M. Valieva Ileocecal resection with extended lymphadenectomy for localized cecal cancer Predictors of adverse outcomes of steroids in patients with severe ulcerative colitis (systematic review and meta-analyses) Tubular duplication of the sigmoid colon: clinical case
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1