Yelena M. Gambarova, A. Gambarov, R. Rustamov, M. Zeynalova
{"title":"遥感和GIS技术在阿塞拜疆戈布斯坦国家公园珍稀植被监测中的应用","authors":"Yelena M. Gambarova, A. Gambarov, R. Rustamov, M. Zeynalova","doi":"10.4236/jgis.2010.22014","DOIUrl":null,"url":null,"abstract":"This paper describes remote sensing methodologies for monitoring rare vegetation with special emphasis on the Image Statistic Analysis for set of training samples and classification. At first 5 types of Rare Vegetation communities were defined and the Initial classification scheme was designed on that base. After preliminary Statistic Analysis for training samples, a modification algorithm of the classification scheme was defined: one led us to creating a 4 class’s scheme (Final classification scheme). The different methods analysis such as signature statistics, signature separability and scatter plots are used. According to the results, the average separability (Transformed Divergence) is 1951.14, minimum is 1732.44 and maximum is 2000 which shows an acceptable level of accuracy. Contingency Matrix computed on the results of the training on Final classi- fication scheme achieves better results, in terms of overall accuracy, than the training on Initial classification scheme.","PeriodicalId":93313,"journal":{"name":"Journal of geographic information system","volume":"39 1","pages":"93-99"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Remote Sensing and GIS as an Advance Space Technologies for Rare Vegetation Monitoring in Gobustan State National Park, Azerbaijan\",\"authors\":\"Yelena M. Gambarova, A. Gambarov, R. Rustamov, M. Zeynalova\",\"doi\":\"10.4236/jgis.2010.22014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes remote sensing methodologies for monitoring rare vegetation with special emphasis on the Image Statistic Analysis for set of training samples and classification. At first 5 types of Rare Vegetation communities were defined and the Initial classification scheme was designed on that base. After preliminary Statistic Analysis for training samples, a modification algorithm of the classification scheme was defined: one led us to creating a 4 class’s scheme (Final classification scheme). The different methods analysis such as signature statistics, signature separability and scatter plots are used. According to the results, the average separability (Transformed Divergence) is 1951.14, minimum is 1732.44 and maximum is 2000 which shows an acceptable level of accuracy. Contingency Matrix computed on the results of the training on Final classi- fication scheme achieves better results, in terms of overall accuracy, than the training on Initial classification scheme.\",\"PeriodicalId\":93313,\"journal\":{\"name\":\"Journal of geographic information system\",\"volume\":\"39 1\",\"pages\":\"93-99\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of geographic information system\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/jgis.2010.22014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of geographic information system","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/jgis.2010.22014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Remote Sensing and GIS as an Advance Space Technologies for Rare Vegetation Monitoring in Gobustan State National Park, Azerbaijan
This paper describes remote sensing methodologies for monitoring rare vegetation with special emphasis on the Image Statistic Analysis for set of training samples and classification. At first 5 types of Rare Vegetation communities were defined and the Initial classification scheme was designed on that base. After preliminary Statistic Analysis for training samples, a modification algorithm of the classification scheme was defined: one led us to creating a 4 class’s scheme (Final classification scheme). The different methods analysis such as signature statistics, signature separability and scatter plots are used. According to the results, the average separability (Transformed Divergence) is 1951.14, minimum is 1732.44 and maximum is 2000 which shows an acceptable level of accuracy. Contingency Matrix computed on the results of the training on Final classi- fication scheme achieves better results, in terms of overall accuracy, than the training on Initial classification scheme.