基于YOLOv3的人体跌倒检测算法

Xiang Wang, Ke-bin Jia
{"title":"基于YOLOv3的人体跌倒检测算法","authors":"Xiang Wang, Ke-bin Jia","doi":"10.1109/ICIVC50857.2020.9177447","DOIUrl":null,"url":null,"abstract":"With the increase of the elderly population, the phenomenon of the elderly falling at home or out is more and more common. Therefore, fall detection is of great significance for the health protection of the elderly. Throughout the research of fall detection at home and abroad, most of the fall detection based on video monitoring is complex and redundant, which affects the real-time and accuracy of detection. In view of the above problems, this paper proposes a fall detection method based on video in complex environment, aiming to detect fall behavior more accurately and quickly. The main work of this paper is as follows: firstly, YOLOv3 network model is proposed for detection algorithm. Secondly, the human fall detection data set is constructed by referring to Pascal VOC data set format. Then, the algorithm model is optimized and trained in GPU (graphic processing unit) deep learning server. Finally, comparison of test results with our YOLOv3 network model and other detection algorithms shows that our detection algorithm has a good recognition effect.","PeriodicalId":6806,"journal":{"name":"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)","volume":"22 1","pages":"50-54"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Human Fall Detection Algorithm Based on YOLOv3\",\"authors\":\"Xiang Wang, Ke-bin Jia\",\"doi\":\"10.1109/ICIVC50857.2020.9177447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increase of the elderly population, the phenomenon of the elderly falling at home or out is more and more common. Therefore, fall detection is of great significance for the health protection of the elderly. Throughout the research of fall detection at home and abroad, most of the fall detection based on video monitoring is complex and redundant, which affects the real-time and accuracy of detection. In view of the above problems, this paper proposes a fall detection method based on video in complex environment, aiming to detect fall behavior more accurately and quickly. The main work of this paper is as follows: firstly, YOLOv3 network model is proposed for detection algorithm. Secondly, the human fall detection data set is constructed by referring to Pascal VOC data set format. Then, the algorithm model is optimized and trained in GPU (graphic processing unit) deep learning server. Finally, comparison of test results with our YOLOv3 network model and other detection algorithms shows that our detection algorithm has a good recognition effect.\",\"PeriodicalId\":6806,\"journal\":{\"name\":\"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)\",\"volume\":\"22 1\",\"pages\":\"50-54\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIVC50857.2020.9177447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIVC50857.2020.9177447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

随着老年人口的增加,老年人在家或外出摔倒的现象越来越普遍。因此,跌倒检测对于老年人的健康保护具有重要意义。纵观国内外对跌倒检测的研究,大多数基于视频监控的跌倒检测过于复杂和冗余,影响了检测的实时性和准确性。针对上述问题,本文提出了一种基于视频的复杂环境下跌倒检测方法,旨在更加准确、快速地检测跌倒行为。本文的主要工作如下:首先,提出了YOLOv3网络模型的检测算法。其次,参照Pascal VOC数据集格式构建人体跌倒检测数据集;然后在GPU(图形处理单元)深度学习服务器上对算法模型进行优化和训练。最后,将测试结果与我们的YOLOv3网络模型和其他检测算法进行比较,表明我们的检测算法具有良好的识别效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human Fall Detection Algorithm Based on YOLOv3
With the increase of the elderly population, the phenomenon of the elderly falling at home or out is more and more common. Therefore, fall detection is of great significance for the health protection of the elderly. Throughout the research of fall detection at home and abroad, most of the fall detection based on video monitoring is complex and redundant, which affects the real-time and accuracy of detection. In view of the above problems, this paper proposes a fall detection method based on video in complex environment, aiming to detect fall behavior more accurately and quickly. The main work of this paper is as follows: firstly, YOLOv3 network model is proposed for detection algorithm. Secondly, the human fall detection data set is constructed by referring to Pascal VOC data set format. Then, the algorithm model is optimized and trained in GPU (graphic processing unit) deep learning server. Finally, comparison of test results with our YOLOv3 network model and other detection algorithms shows that our detection algorithm has a good recognition effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online Multi-object Tracking with Siamese Network and Optical Flow Research on Product Style Design Based on Genetic Algorithm Super-Resolution Reconstruction Algorithm of Target Image Based on Learning Background Air Quality Inference with Deep Convolutional Conditional Random Field Feature Point Extraction and Matching Method Based on Akaze in Illumination Invariant Color Space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1