模型转换性能分析与预测扩展摘要

Vijayshree Vijayshree, Markus Frank, Steffen Becker
{"title":"模型转换性能分析与预测扩展摘要","authors":"Vijayshree Vijayshree, Markus Frank, Steffen Becker","doi":"10.1145/3358960.3383769","DOIUrl":null,"url":null,"abstract":"In the software development process, model transformation is increasingly assimilated. However, systems being developed with model transformation sometimes grow in size and become complex. Meanwhile, the performance of model transformation tends to decrease. Hence, performance is an important quality of model transformation. According to current research model transformation performance focuses on optimising the engines internally. However, there exists no research activities to support transformation engineer to identify performance bottleneck in the transformation rules and hence, to predict the overall performance. In this paper we vision our aim at providing an approach of monitoring and profiling to identify the root cause of performance issues in the transformation rules and to predict the performance of model transformation. This will enable software engineers to systematically identify performance issues as well as predict the performance of model transformation.","PeriodicalId":10596,"journal":{"name":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Extended Abstract of Performance Analysis and Prediction of Model Transformation\",\"authors\":\"Vijayshree Vijayshree, Markus Frank, Steffen Becker\",\"doi\":\"10.1145/3358960.3383769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the software development process, model transformation is increasingly assimilated. However, systems being developed with model transformation sometimes grow in size and become complex. Meanwhile, the performance of model transformation tends to decrease. Hence, performance is an important quality of model transformation. According to current research model transformation performance focuses on optimising the engines internally. However, there exists no research activities to support transformation engineer to identify performance bottleneck in the transformation rules and hence, to predict the overall performance. In this paper we vision our aim at providing an approach of monitoring and profiling to identify the root cause of performance issues in the transformation rules and to predict the performance of model transformation. This will enable software engineers to systematically identify performance issues as well as predict the performance of model transformation.\",\"PeriodicalId\":10596,\"journal\":{\"name\":\"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3358960.3383769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3358960.3383769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在软件开发过程中,模型转换越来越被同化。然而,使用模型转换开发的系统有时会扩大规模并变得复杂。同时,模型转换的性能有下降的趋势。因此,性能是模型转换的一个重要品质。根据目前的研究,模型转换性能主要集中在发动机内部的优化。然而,目前还没有研究活动来支持转换工程师识别转换规则中的性能瓶颈,从而预测整体性能。在本文中,我们的目标是提供一种监控和分析的方法,以识别转换规则中性能问题的根本原因,并预测模型转换的性能。这将使软件工程师能够系统地识别性能问题以及预测模型转换的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extended Abstract of Performance Analysis and Prediction of Model Transformation
In the software development process, model transformation is increasingly assimilated. However, systems being developed with model transformation sometimes grow in size and become complex. Meanwhile, the performance of model transformation tends to decrease. Hence, performance is an important quality of model transformation. According to current research model transformation performance focuses on optimising the engines internally. However, there exists no research activities to support transformation engineer to identify performance bottleneck in the transformation rules and hence, to predict the overall performance. In this paper we vision our aim at providing an approach of monitoring and profiling to identify the root cause of performance issues in the transformation rules and to predict the performance of model transformation. This will enable software engineers to systematically identify performance issues as well as predict the performance of model transformation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sampling-based Label Propagation for Balanced Graph Partitioning ICPE '22: ACM/SPEC International Conference on Performance Engineering, Bejing, China, April 9 - 13, 2022 The Role of Analytical Models in the Engineering and Science of Computer Systems Enhancing Observability of Serverless Computing with the Serverless Application Analytics Framework Towards Elastic and Sustainable Data Stream Processing on Edge Infrastructure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1