基于混合机器学习技术的最优多疾病预测框架

Aditya Gupta, Amritpal Singh
{"title":"基于混合机器学习技术的最优多疾病预测框架","authors":"Aditya Gupta, Amritpal Singh","doi":"10.48129/kjs.splml.19321","DOIUrl":null,"url":null,"abstract":"The prediction of lifestyle diseases is a vital domain in healthcare informatics research. This task is primarily achieved using the widely available machine learning algorithms. However, the highdimensionality of data amplifies the computation complexity and significantly reduces the models’ efficiency. Conspicuously, we presented a multi-disease prediction strategy for intelligent decision support using ensemble learning. The proposed work leverages genetic algorithm-based recursive feature elimination and AdaBoost to predict two prominent lifestyle diseases. Alongside the proposed approach, various benchmark machine learning techniques are also trained and validated using selected features under k-fold cross-validation. The results reveal the effectiveness of the proposed methodology in predicting multiple diseases in comparison to past works.","PeriodicalId":49933,"journal":{"name":"Kuwait Journal of Science & Engineering","volume":"78 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An optimal multi-disease prediction framework using hybrid machine learning techniques\",\"authors\":\"Aditya Gupta, Amritpal Singh\",\"doi\":\"10.48129/kjs.splml.19321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The prediction of lifestyle diseases is a vital domain in healthcare informatics research. This task is primarily achieved using the widely available machine learning algorithms. However, the highdimensionality of data amplifies the computation complexity and significantly reduces the models’ efficiency. Conspicuously, we presented a multi-disease prediction strategy for intelligent decision support using ensemble learning. The proposed work leverages genetic algorithm-based recursive feature elimination and AdaBoost to predict two prominent lifestyle diseases. Alongside the proposed approach, various benchmark machine learning techniques are also trained and validated using selected features under k-fold cross-validation. The results reveal the effectiveness of the proposed methodology in predicting multiple diseases in comparison to past works.\",\"PeriodicalId\":49933,\"journal\":{\"name\":\"Kuwait Journal of Science & Engineering\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kuwait Journal of Science & Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48129/kjs.splml.19321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kuwait Journal of Science & Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48129/kjs.splml.19321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

生活方式疾病的预测是医疗信息学研究的一个重要领域。这项任务主要是使用广泛可用的机器学习算法来实现的。然而,数据的高维性增加了模型的计算复杂度,大大降低了模型的效率。值得注意的是,我们提出了一种使用集成学习的智能决策支持的多疾病预测策略。提出的工作利用基于遗传算法的递归特征消除和AdaBoost来预测两种突出的生活方式疾病。除了提出的方法外,还使用k-fold交叉验证下的选定特征训练和验证了各种基准机器学习技术。结果表明,与过去的工作相比,所提出的方法在预测多种疾病方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An optimal multi-disease prediction framework using hybrid machine learning techniques
The prediction of lifestyle diseases is a vital domain in healthcare informatics research. This task is primarily achieved using the widely available machine learning algorithms. However, the highdimensionality of data amplifies the computation complexity and significantly reduces the models’ efficiency. Conspicuously, we presented a multi-disease prediction strategy for intelligent decision support using ensemble learning. The proposed work leverages genetic algorithm-based recursive feature elimination and AdaBoost to predict two prominent lifestyle diseases. Alongside the proposed approach, various benchmark machine learning techniques are also trained and validated using selected features under k-fold cross-validation. The results reveal the effectiveness of the proposed methodology in predicting multiple diseases in comparison to past works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Kuwait Journal of Science & Engineering
Kuwait Journal of Science & Engineering MULTIDISCIPLINARY SCIENCES-
自引率
0.00%
发文量
0
审稿时长
3 months
期刊最新文献
Synthesis of ternary nanocomposites of GO–MnO2@Tau and GO-MnO2@CA for efficient removal of dyes Modulational Stability Analysis of Ion Temperature Gradient Mode in Electron-ion Plasma Hydrazone bimetallic complex: synthesis, characterization, in silico and biological evaluation targeting breast and lung cancer cells’ G-quadruplex DNA Modeling of thermodynamic properties of Fe-Ni-C, Fe-Cr-C alloys using computational approach Carbon nanodots-based C-dips for rapid colorimetric detection of clinically important metal ions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1