{"title":"宇宙尘埃颗粒表面的物理和化学:实验室的观点","authors":"A. Potapov, M. McCoustra","doi":"10.1080/0144235X.2021.1918498","DOIUrl":null,"url":null,"abstract":"Dust grains play a central role in the physics and chemistry of cosmic environments. They influence the optical and thermal properties of the medium due to their interaction with stellar radiation; provide surfaces for the chemical reactions that are responsible for the synthesis of a significant fraction of key astronomical molecules; and they are building blocks of pebbles, comets, asteroids, planetesimals, and planets. In this paper, we review experimental studies of physical and chemical processes, such as adsorption, desorption, diffusion and reactions forming molecules, on the surface of reliable cosmic dust grain analogues as related to processes in diffuse, translucent, and dense interstellar clouds, protostellar envelopes, planet-forming disks, and planetary atmospheres. The information that such experiments reveal should be flexible enough to be used in many different environments. In addition, we provide a forward look discussing new ideas, experimental approaches, and research directions.","PeriodicalId":54932,"journal":{"name":"International Reviews in Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2021-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Physics and chemistry on the surface of cosmic dust grains: a laboratory view\",\"authors\":\"A. Potapov, M. McCoustra\",\"doi\":\"10.1080/0144235X.2021.1918498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dust grains play a central role in the physics and chemistry of cosmic environments. They influence the optical and thermal properties of the medium due to their interaction with stellar radiation; provide surfaces for the chemical reactions that are responsible for the synthesis of a significant fraction of key astronomical molecules; and they are building blocks of pebbles, comets, asteroids, planetesimals, and planets. In this paper, we review experimental studies of physical and chemical processes, such as adsorption, desorption, diffusion and reactions forming molecules, on the surface of reliable cosmic dust grain analogues as related to processes in diffuse, translucent, and dense interstellar clouds, protostellar envelopes, planet-forming disks, and planetary atmospheres. The information that such experiments reveal should be flexible enough to be used in many different environments. In addition, we provide a forward look discussing new ideas, experimental approaches, and research directions.\",\"PeriodicalId\":54932,\"journal\":{\"name\":\"International Reviews in Physical Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2021-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Reviews in Physical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/0144235X.2021.1918498\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Reviews in Physical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/0144235X.2021.1918498","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Physics and chemistry on the surface of cosmic dust grains: a laboratory view
Dust grains play a central role in the physics and chemistry of cosmic environments. They influence the optical and thermal properties of the medium due to their interaction with stellar radiation; provide surfaces for the chemical reactions that are responsible for the synthesis of a significant fraction of key astronomical molecules; and they are building blocks of pebbles, comets, asteroids, planetesimals, and planets. In this paper, we review experimental studies of physical and chemical processes, such as adsorption, desorption, diffusion and reactions forming molecules, on the surface of reliable cosmic dust grain analogues as related to processes in diffuse, translucent, and dense interstellar clouds, protostellar envelopes, planet-forming disks, and planetary atmospheres. The information that such experiments reveal should be flexible enough to be used in many different environments. In addition, we provide a forward look discussing new ideas, experimental approaches, and research directions.
期刊介绍:
International Reviews in Physical Chemistry publishes review articles describing frontier research areas in physical chemistry. Internationally renowned scientists describe their own research in the wider context of the field. The articles are of interest not only to specialists but also to those wishing to read general and authoritative accounts of recent developments in physical chemistry, chemical physics and theoretical chemistry. The journal appeals to research workers, lecturers and research students alike.