基于递归最小二乘优化的全参数化系统模型降阶

Zheng Zhang, I. Elfadel, L. Daniel
{"title":"基于递归最小二乘优化的全参数化系统模型降阶","authors":"Zheng Zhang, I. Elfadel, L. Daniel","doi":"10.1109/ICCAD.2011.6105380","DOIUrl":null,"url":null,"abstract":"This paper presents an approach for the model order reduction of fully parameterized linear dynamic systems. In a fully parameterized system, not only the state matrices, but also can the input/output matrices be parameterized. The algorithm presented in this paper is based on neither conventional moment-matching nor balanced-truncation ideas. Instead, it uses “optimal (block) vectors” to construct the projection matrix, such that the system errors in the whole parameter space are minimized. This minimization problem is formulated as a recursive least square (RLS) optimization and then solved at a low cost. Our algorithm is tested by a set of multi-port multi-parameter cases with both intermediate and large parameter variations. The numerical results show that high accuracy is guaranteed, and that very compact models can be obtained for multi-parameter models due to the fact that the ROM size is independent of the number of parameters in our approach.","PeriodicalId":6357,"journal":{"name":"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Model order reduction of fully parameterized systems by recursive least square optimization\",\"authors\":\"Zheng Zhang, I. Elfadel, L. Daniel\",\"doi\":\"10.1109/ICCAD.2011.6105380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an approach for the model order reduction of fully parameterized linear dynamic systems. In a fully parameterized system, not only the state matrices, but also can the input/output matrices be parameterized. The algorithm presented in this paper is based on neither conventional moment-matching nor balanced-truncation ideas. Instead, it uses “optimal (block) vectors” to construct the projection matrix, such that the system errors in the whole parameter space are minimized. This minimization problem is formulated as a recursive least square (RLS) optimization and then solved at a low cost. Our algorithm is tested by a set of multi-port multi-parameter cases with both intermediate and large parameter variations. The numerical results show that high accuracy is guaranteed, and that very compact models can be obtained for multi-parameter models due to the fact that the ROM size is independent of the number of parameters in our approach.\",\"PeriodicalId\":6357,\"journal\":{\"name\":\"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.2011.6105380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2011.6105380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种全参数化线性动态系统模型阶数约简方法。在全参数化系统中,不仅状态矩阵可以参数化,输入/输出矩阵也可以参数化。本文提出的算法既不是基于传统的矩匹配思想,也不是基于平衡截断思想。相反,它使用“最优(块)向量”来构造投影矩阵,从而使整个参数空间中的系统误差最小化。该最小化问题被表述为递归最小二乘优化,然后以低成本求解。我们的算法通过一组多端口多参数中、大参数变化的案例进行了测试。数值结果表明,由于该方法中ROM大小与参数数量无关,可以保证较高的精度,并且对于多参数模型可以得到非常紧凑的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model order reduction of fully parameterized systems by recursive least square optimization
This paper presents an approach for the model order reduction of fully parameterized linear dynamic systems. In a fully parameterized system, not only the state matrices, but also can the input/output matrices be parameterized. The algorithm presented in this paper is based on neither conventional moment-matching nor balanced-truncation ideas. Instead, it uses “optimal (block) vectors” to construct the projection matrix, such that the system errors in the whole parameter space are minimized. This minimization problem is formulated as a recursive least square (RLS) optimization and then solved at a low cost. Our algorithm is tested by a set of multi-port multi-parameter cases with both intermediate and large parameter variations. The numerical results show that high accuracy is guaranteed, and that very compact models can be obtained for multi-parameter models due to the fact that the ROM size is independent of the number of parameters in our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A framework for accelerating neuromorphic-vision algorithms on FPGAs Alternative design methodologies for the next generation logic switch Property-specific sequential invariant extraction for SAT-based unbounded model checking A corner stitching compliant B∗-tree representation and its applications to analog placement Heterogeneous B∗-trees for analog placement with symmetry and regularity considerations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1