阶梯+ y双量子点系统的自发相干

B. Al-Nashy, Sabeah Jasim, A. G. Al-Shatravi, A. Al-khursan
{"title":"阶梯+ y双量子点系统的自发相干","authors":"B. Al-Nashy, Sabeah Jasim, A. G. Al-Shatravi, A. Al-khursan","doi":"10.1177/2397791419859159","DOIUrl":null,"url":null,"abstract":"A model was presented for linear susceptibility in ladder-plus-Y configuration of double quantum dot system using density matrix theory and including spontaneously generated coherence of Λ-type system. Wetting layer and quantum dot inhomogeneity were considered in the calculations, which gives a practical description of double quantum dot structures well. With increasing spontaneously generated coherence from Λ-component, the dispersion was increased and shifted under spontaneously generated coherence. The inclusion of wetting layer under spontaneously generated coherence increases gain which coincides with the published results. A possibility of slow light was predicted.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":"2 1","pages":"65 - 71"},"PeriodicalIF":4.2000,"publicationDate":"2019-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spontaneously generated coherence in ladder-plus-Y double quantum dot system\",\"authors\":\"B. Al-Nashy, Sabeah Jasim, A. G. Al-Shatravi, A. Al-khursan\",\"doi\":\"10.1177/2397791419859159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A model was presented for linear susceptibility in ladder-plus-Y configuration of double quantum dot system using density matrix theory and including spontaneously generated coherence of Λ-type system. Wetting layer and quantum dot inhomogeneity were considered in the calculations, which gives a practical description of double quantum dot structures well. With increasing spontaneously generated coherence from Λ-component, the dispersion was increased and shifted under spontaneously generated coherence. The inclusion of wetting layer under spontaneously generated coherence increases gain which coincides with the published results. A possibility of slow light was predicted.\",\"PeriodicalId\":44789,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems\",\"volume\":\"2 1\",\"pages\":\"65 - 71\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2019-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2397791419859159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2397791419859159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

利用密度矩阵理论,考虑Λ-type系统的自发相干性,建立了双量子点系统阶梯+ y结构的线性磁化率模型。计算中考虑了湿润层和量子点的非均匀性,较好地描述了双量子点结构。随着自发相干度Λ-component的增大,自发相干度下色散增大,色散移位。在自发相干下加入润湿层增加了增益,这与已发表的结果一致。有人预测可能存在慢光。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spontaneously generated coherence in ladder-plus-Y double quantum dot system
A model was presented for linear susceptibility in ladder-plus-Y configuration of double quantum dot system using density matrix theory and including spontaneously generated coherence of Λ-type system. Wetting layer and quantum dot inhomogeneity were considered in the calculations, which gives a practical description of double quantum dot structures well. With increasing spontaneously generated coherence from Λ-component, the dispersion was increased and shifted under spontaneously generated coherence. The inclusion of wetting layer under spontaneously generated coherence increases gain which coincides with the published results. A possibility of slow light was predicted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
1.70%
发文量
24
期刊介绍: Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems is a peer-reviewed scientific journal published since 2004 by SAGE Publications on behalf of the Institution of Mechanical Engineers. The journal focuses on research in the field of nanoengineering, nanoscience and nanotechnology and aims to publish high quality academic papers in this field. In addition, the journal is indexed in several reputable academic databases and abstracting services, including Scopus, Compendex, and CSA's Advanced Polymers Abstracts, Composites Industry Abstracts, and Earthquake Engineering Abstracts.
期刊最新文献
Performance of carbon nanotubes (CNTs) on the development of radiating hybrid nanofluid flow through an stretching cylinder Optimizing compressive mechanical properties and water absorption of polycaprolactone/nano-hydroxyapatite composite scaffolds by 3D printing based on fused deposition modeling Effectiveness of silver-magnesium oxide-water hybrid nanofluid in Couette channel Optimization and fuzzy model for evaluation of mechanical and tribological properties of Al-CNT-Si3N4 based nano and hybrid composites Adsorption investigation of a composite of metal-organic framework and polyethylene oxide hydrogel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1