IF 2.4 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS International Journal of Information and Learning Technology Pub Date : 2023-04-04 DOI:10.32938/jitu.v2i2.4205
P. G. Manek, Budiman Baso, Biandina Meidyani
{"title":"Identifikasi Tingkat Kematangan Buah Pinang Menggunakan K-Nearest Neighbor Berdasarkan Fitur Tekstur dan Warna","authors":"P. G. Manek, Budiman Baso, Biandina Meidyani","doi":"10.32938/jitu.v2i2.4205","DOIUrl":null,"url":null,"abstract":"This research builds a system for identifying the maturity level of areca fruit based on digital image processing using texture and color features through the Gray Level Co-Occurrence Matrix (GLCM) and Color moments. The initial stage of the research is image pre-processing so that it can be processed to the next stage, namely feature extraction. Texture feature extraction was performed using the Gray Level Co-Occurrence Matrix (GLCM), namely the correlation value and color feature extraction using Color moments, the mean value used in this study. Classification is done based on the features that have been extracted before. This study uses the K-Nearest Neighbor (KNN) classification method. Tests were carried out to determine the parameters that cause changes in the classification results with scenarios including determining the number of Neighbors in KNN. By using 1 Neighbors in the KNN classifier, the best accuracy is 86.36% in the process of identifying the maturity level of areca fruit.","PeriodicalId":51872,"journal":{"name":"International Journal of Information and Learning Technology","volume":"67 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information and Learning Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32938/jitu.v2i2.4205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过灰度共生矩阵(GLCM)和颜色矩,构建了一种基于纹理和颜色特征的数字图像处理槟榔果实成熟度识别系统。研究的初始阶段是图像预处理,然后再进行下一阶段的处理,即特征提取。纹理特征提取使用灰度共生矩阵(GLCM),即相关值和颜色特征提取使用颜色矩,在本研究中使用的平均值。分类是基于之前提取的特征进行的。本研究采用k -最近邻(KNN)分类方法。在确定KNN中的邻居数量等场景下,进行了测试,以确定导致分类结果变化的参数。在KNN分类器中使用1个邻域,在鉴别槟榔果实成熟度的过程中,准确率最高为86.36%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifikasi Tingkat Kematangan Buah Pinang Menggunakan K-Nearest Neighbor Berdasarkan Fitur Tekstur dan Warna
This research builds a system for identifying the maturity level of areca fruit based on digital image processing using texture and color features through the Gray Level Co-Occurrence Matrix (GLCM) and Color moments. The initial stage of the research is image pre-processing so that it can be processed to the next stage, namely feature extraction. Texture feature extraction was performed using the Gray Level Co-Occurrence Matrix (GLCM), namely the correlation value and color feature extraction using Color moments, the mean value used in this study. Classification is done based on the features that have been extracted before. This study uses the K-Nearest Neighbor (KNN) classification method. Tests were carried out to determine the parameters that cause changes in the classification results with scenarios including determining the number of Neighbors in KNN. By using 1 Neighbors in the KNN classifier, the best accuracy is 86.36% in the process of identifying the maturity level of areca fruit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Information and Learning Technology
International Journal of Information and Learning Technology COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
6.10
自引率
3.30%
发文量
33
期刊介绍: International Journal of Information and Learning Technology (IJILT) provides a forum for the sharing of the latest theories, applications, and services related to planning, developing, managing, using, and evaluating information technologies in administrative, academic, and library computing, as well as other educational technologies. Submissions can include research: -Illustrating and critiquing educational technologies -New uses of technology in education -Issue-or results-focused case studies detailing examples of technology applications in higher education -In-depth analyses of the latest theories, applications and services in the field The journal provides wide-ranging and independent coverage of the management, use and integration of information resources and learning technologies.
期刊最新文献
Development of an Automated Hall Effect Experimentation Method for the Electrical Characterization of Thin Films Deteksi Tingkat Kematangan Buah Pinang Menggunakan Metode Support Vector Machine Berdasarkan Warna Dan Tekstur Analisis Kinerja Mikrokomputer Raspberry Pi Pada Smart Greenhouse Berbasis Internet Of Things (IoT) Menggunakan Algoritma Naive Baye SISTEM PENDUKUNG KEPUTUSAN PENENTUAN GURU BERPRESTASI MENGGUNAKAN METODE TOPSIS (STUDI KASUS: DINAS PPO KAB. TTU) Analisis Kepuasan Pengguna Terhadap Penerapan Sistem Informasi Terpadu Layanan Prodi (SIPLO) Menggunakan End User Computing Satisfaction (EUCS)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1