ProfileRank:根据信息扩散发现相关内容和有影响力的用户

A. Silva, Sara Guimarães, Wagner Meira Jr, Mohammed J. Zaki
{"title":"ProfileRank:根据信息扩散发现相关内容和有影响力的用户","authors":"A. Silva, Sara Guimarães, Wagner Meira Jr, Mohammed J. Zaki","doi":"10.1145/2501025.2501033","DOIUrl":null,"url":null,"abstract":"Understanding information diffusion processes that take place on the Web, specially in social media, is a fundamental step towards the design of effective information diffusion mechanisms, recommendation systems, and viral marketing/advertising campaigns. Two key concepts in information diffusion are influence and relevance. Influence is the ability to popularize content in an online community. To this end, influentials introduce and propagate relevant content, in the sense that such content satisfies the information needs of a significant portion of this community.\n In this paper, we study the problem of identifying influential users and relevant content in information diffusion data. We propose ProfileRank, a new information diffusion model based on random walks over a user-content graph. ProfileRank is a PageRank inspired model that exploits the principle that relevant content is created and propagated by influential users and influential users create relevant content. A convenient property of ProfileRank is that it can be adapted to provide personalized recommendations.\n Experimental results demonstrate that ProfileRank makes accurate recommendations, outperforming baseline techniques. We also illustrate relevant content and influential users discovered using ProfileRank. Our analysis shows that ProfileRank scores are more correlated with content diffusion than with the network structure. We also show that our new modeling is more efficient than PageRank to perform these calculations.","PeriodicalId":74521,"journal":{"name":"Proceedings of the ... IEEE/ACM International Conference on Advances in Social Network Analysis and Mining. International Conference on Advances in Social Network Analysis and Mining","volume":"28 1","pages":"2:1-2:9"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":"{\"title\":\"ProfileRank: finding relevant content and influential users based on information diffusion\",\"authors\":\"A. Silva, Sara Guimarães, Wagner Meira Jr, Mohammed J. Zaki\",\"doi\":\"10.1145/2501025.2501033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding information diffusion processes that take place on the Web, specially in social media, is a fundamental step towards the design of effective information diffusion mechanisms, recommendation systems, and viral marketing/advertising campaigns. Two key concepts in information diffusion are influence and relevance. Influence is the ability to popularize content in an online community. To this end, influentials introduce and propagate relevant content, in the sense that such content satisfies the information needs of a significant portion of this community.\\n In this paper, we study the problem of identifying influential users and relevant content in information diffusion data. We propose ProfileRank, a new information diffusion model based on random walks over a user-content graph. ProfileRank is a PageRank inspired model that exploits the principle that relevant content is created and propagated by influential users and influential users create relevant content. A convenient property of ProfileRank is that it can be adapted to provide personalized recommendations.\\n Experimental results demonstrate that ProfileRank makes accurate recommendations, outperforming baseline techniques. We also illustrate relevant content and influential users discovered using ProfileRank. Our analysis shows that ProfileRank scores are more correlated with content diffusion than with the network structure. We also show that our new modeling is more efficient than PageRank to perform these calculations.\",\"PeriodicalId\":74521,\"journal\":{\"name\":\"Proceedings of the ... IEEE/ACM International Conference on Advances in Social Network Analysis and Mining. International Conference on Advances in Social Network Analysis and Mining\",\"volume\":\"28 1\",\"pages\":\"2:1-2:9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"76\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... IEEE/ACM International Conference on Advances in Social Network Analysis and Mining. International Conference on Advances in Social Network Analysis and Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2501025.2501033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE/ACM International Conference on Advances in Social Network Analysis and Mining. International Conference on Advances in Social Network Analysis and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2501025.2501033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 76

摘要

了解发生在网络上的信息传播过程,特别是在社交媒体上,是设计有效的信息传播机制、推荐系统和病毒式营销/广告活动的基本步骤。信息传播中的两个关键概念是影响力和相关性。影响力是指在网络社区中普及内容的能力。为此,有影响力的人引入和传播相关内容,因为这些内容满足了该社区相当一部分人的信息需求。本文研究了信息传播数据中有影响力的用户和相关内容的识别问题。我们提出了ProfileRank,一个新的基于用户内容图随机游走的信息扩散模型。ProfileRank是一个受PageRank启发的模型,它利用了相关内容由有影响力的用户创建和传播,有影响力的用户创建相关内容的原则。ProfileRank的一个方便属性是,它可以适应提供个性化的推荐。实验结果表明,ProfileRank可以做出准确的推荐,优于基线技术。我们还说明了使用ProfileRank发现的相关内容和有影响力的用户。我们的分析表明,ProfileRank分数与内容扩散的相关性大于与网络结构的相关性。我们还表明,我们的新模型在执行这些计算时比PageRank更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ProfileRank: finding relevant content and influential users based on information diffusion
Understanding information diffusion processes that take place on the Web, specially in social media, is a fundamental step towards the design of effective information diffusion mechanisms, recommendation systems, and viral marketing/advertising campaigns. Two key concepts in information diffusion are influence and relevance. Influence is the ability to popularize content in an online community. To this end, influentials introduce and propagate relevant content, in the sense that such content satisfies the information needs of a significant portion of this community. In this paper, we study the problem of identifying influential users and relevant content in information diffusion data. We propose ProfileRank, a new information diffusion model based on random walks over a user-content graph. ProfileRank is a PageRank inspired model that exploits the principle that relevant content is created and propagated by influential users and influential users create relevant content. A convenient property of ProfileRank is that it can be adapted to provide personalized recommendations. Experimental results demonstrate that ProfileRank makes accurate recommendations, outperforming baseline techniques. We also illustrate relevant content and influential users discovered using ProfileRank. Our analysis shows that ProfileRank scores are more correlated with content diffusion than with the network structure. We also show that our new modeling is more efficient than PageRank to perform these calculations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An ensemble transformer-based model for Arabic sentiment analysis Homophily and polarization on political twitter during the 2017 Norwegian election Perceptible sentiment analysis of students' WhatsApp group chats in valence, arousal, and dominance space A performant deep learning model for sentiment analysis of climate change DEES: a real-time system for event extraction from disaster-related web text
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1