{"title":"区域供热需求的短期预测","authors":"R. Petrichenko, D. Sobolevsky, A. Sauhats","doi":"10.1109/EEEIC.2018.8494362","DOIUrl":null,"url":null,"abstract":"Focus of the paper is statistical data pre-processing before it applies for prediction the thermal load in district heating networks, focusing on day-ahead hourly planning. Such a planning is highly important for cogeneration plants participating in electricity wholesale markets. Article considers the possibility of correcting detected inconsistencies into district heating statistical data using forecasted values of the heat demand. The case study is based on the examples of heat supply of a large city, gas fired cogeneration power plants and real world data. The cost of errors in the prediction of heat consumption is estimated.","PeriodicalId":6563,"journal":{"name":"2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","volume":"117 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Short-Term Forecasting of District Heating Demand\",\"authors\":\"R. Petrichenko, D. Sobolevsky, A. Sauhats\",\"doi\":\"10.1109/EEEIC.2018.8494362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Focus of the paper is statistical data pre-processing before it applies for prediction the thermal load in district heating networks, focusing on day-ahead hourly planning. Such a planning is highly important for cogeneration plants participating in electricity wholesale markets. Article considers the possibility of correcting detected inconsistencies into district heating statistical data using forecasted values of the heat demand. The case study is based on the examples of heat supply of a large city, gas fired cogeneration power plants and real world data. The cost of errors in the prediction of heat consumption is estimated.\",\"PeriodicalId\":6563,\"journal\":{\"name\":\"2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)\",\"volume\":\"117 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EEEIC.2018.8494362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEEIC.2018.8494362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Focus of the paper is statistical data pre-processing before it applies for prediction the thermal load in district heating networks, focusing on day-ahead hourly planning. Such a planning is highly important for cogeneration plants participating in electricity wholesale markets. Article considers the possibility of correcting detected inconsistencies into district heating statistical data using forecasted values of the heat demand. The case study is based on the examples of heat supply of a large city, gas fired cogeneration power plants and real world data. The cost of errors in the prediction of heat consumption is estimated.