Azizah Aulia Rahman, Sisly Destri Agustin, Nurhayati Ibrahim, N. Kumalasari
{"title":"Perbandingan Algoritma YOLOv4 dan Scaled YOLOv4 untuk Deteksi Objek pada Citra Termal","authors":"Azizah Aulia Rahman, Sisly Destri Agustin, Nurhayati Ibrahim, N. Kumalasari","doi":"10.26760/mindjournal.v7i1.61-71","DOIUrl":null,"url":null,"abstract":"ABSTRAKMinimnya visibilitas pejalan kaki dan pengendara pada malam hari karena kurangnya pencahayaan pada lampu jalan menyebabkan kecelakaan rentan terjadi pada rentang waktu tersebut. Sistem penglihatan komputer berbeda dengan manusia, semua objek dengan suhu di atas nol dapat memancarkan radiasi inframerah jika direkam menggunakan kamera termal. Dalam penelitian ini penulis mengidentifikasi citra termal dalam bentuk citra RGB dengan algoritma YOLOv4 dan Scaled YOLOv4 sebagai deteksi objek. Performa sistem diukur berdasarkan nilai presisi, recall, f1-score, dan mAP. Eksperimen dilakukan pada dataset citra termal dengan objek manusia. Skenario yang digunakan adalah mendeteksi objek dengan jarak 5m, 10m, 15m, dan 20m. Hasil deteksi didapatkan algoritma Scaled YOLOv4 CSP lebih unggul dengan nilai pengujian precision 94,3%, recall 83,8%, f1-Score 88,7%, dan mAP 86,9%. Hasil tersebut dipengaruhi oleh ukuran citra dan jumlah dataset dari citra training, citra validation, dan citra uji.Kata kunci: Citra Termal, YOLO, YOLOv4, Scaled-YOLOv4, Deteksi ObjekABSTRACTThe lack of visibility of pedestrians and drivers at night due to lack of lighting in street lights makes accidents prone to occur during this time. The computer vision system is different from the humans, any object with a temperature above zero can emit infrared radiation when using a thermal camera. In this study, the authors identify thermal images in RGB using YOLOv4 and Scaled YOLOv4 as object detection algorithms. System performance is measured based on the value of precision, recall, f1-score, and mAP. Experiments were carried out on a thermal image dataset with human objects. The scenario used was to detect objects at a distance of 5m, 10m, 15m, and 20m. The detection results show that Scaled YOLOv4 CSP algorithms is the best, based on the test value of 94.3% precision, 83.8% recall, 88.7% f1-Score, and 86.9% mAP. These results are influenced by the size of the image and the number of datasets from training images, validation images, and test images.Keywords: Thermal Image, YOLO, YOLOv4, Scaled-YOLOv4, Object Detection","PeriodicalId":43900,"journal":{"name":"Time & Mind-The Journal of Archaeology Consciousness and Culture","volume":"7 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Time & Mind-The Journal of Archaeology Consciousness and Culture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26760/mindjournal.v7i1.61-71","RegionNum":4,"RegionCategory":"历史学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHAEOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由于路灯灯光不足,行人和司机夜间能见度不佳,导致这段时间内发生事故。计算机的视觉系统与人类不同,所有温度高于零的物体都可以通过热摄像机发出红外辐射。在本研究中,作者通过YOLOv4算法识别RGB图像的热图像,并将YOLOv4 Scaled YOLOv4进行检测。系统的性能是根据精度、召回、f1-score和mAP来衡量的。实验是在人体的热成像数据库里进行的。使用的场景是探测距离为5m、10m、15m和20米的物体。检测结果发现算法Scaled YOLOv4 CSP的值为94.3%,recall 83.8%, f1-Score 88.7%和mAP 86.9%。这些结果受到培训意象、验证意象和测试意象的数据测量和数据数量的影响。关键字:热成像,YOLO, YOLOv4, Scaled-YOLOv4,检测行人在夜间照明到街上灯光导致有时甚至死亡的可见性。该计算机的视觉系统与人类不同,任何低于零温度的物体在使用热相机时都可能受到红外线辐射。在这项研究中,当局使用YOLOv4的热成像技术,用物体探测算法将YOLOv4进行识别。系统表现基于珍贵、回忆、f1分数和地图。实验结果显示了一种与人类对象无关的热图像。过去的场景是在5米、10米、15米和20米的距离内发现物体。根据估计的浓度为YOLOv4 CSP算法,根据测试值为94.3%的浓度,88.8%的召回,88.7%的f1-Score, 88.9%的地图显示。这些结果受到来自培训、验证、验证图像的数据和数据数据的影响。热成像,YOLO, YOLOv4, scad -YOLOv4,对象检测
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Perbandingan Algoritma YOLOv4 dan Scaled YOLOv4 untuk Deteksi Objek pada Citra Termal
ABSTRAKMinimnya visibilitas pejalan kaki dan pengendara pada malam hari karena kurangnya pencahayaan pada lampu jalan menyebabkan kecelakaan rentan terjadi pada rentang waktu tersebut. Sistem penglihatan komputer berbeda dengan manusia, semua objek dengan suhu di atas nol dapat memancarkan radiasi inframerah jika direkam menggunakan kamera termal. Dalam penelitian ini penulis mengidentifikasi citra termal dalam bentuk citra RGB dengan algoritma YOLOv4 dan Scaled YOLOv4 sebagai deteksi objek. Performa sistem diukur berdasarkan nilai presisi, recall, f1-score, dan mAP. Eksperimen dilakukan pada dataset citra termal dengan objek manusia. Skenario yang digunakan adalah mendeteksi objek dengan jarak 5m, 10m, 15m, dan 20m. Hasil deteksi didapatkan algoritma Scaled YOLOv4 CSP lebih unggul dengan nilai pengujian precision 94,3%, recall 83,8%, f1-Score 88,7%, dan mAP 86,9%. Hasil tersebut dipengaruhi oleh ukuran citra dan jumlah dataset dari citra training, citra validation, dan citra uji.Kata kunci: Citra Termal, YOLO, YOLOv4, Scaled-YOLOv4, Deteksi ObjekABSTRACTThe lack of visibility of pedestrians and drivers at night due to lack of lighting in street lights makes accidents prone to occur during this time. The computer vision system is different from the humans, any object with a temperature above zero can emit infrared radiation when using a thermal camera. In this study, the authors identify thermal images in RGB using YOLOv4 and Scaled YOLOv4 as object detection algorithms. System performance is measured based on the value of precision, recall, f1-score, and mAP. Experiments were carried out on a thermal image dataset with human objects. The scenario used was to detect objects at a distance of 5m, 10m, 15m, and 20m. The detection results show that Scaled YOLOv4 CSP algorithms is the best, based on the test value of 94.3% precision, 83.8% recall, 88.7% f1-Score, and 86.9% mAP. These results are influenced by the size of the image and the number of datasets from training images, validation images, and test images.Keywords: Thermal Image, YOLO, YOLOv4, Scaled-YOLOv4, Object Detection
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
23
期刊最新文献
The Rough Tor Effect: early prehistoric monuments focusing on significant tors in Cornwall Apolline divination: hallucinogenic substances or cognitive inputs? The case of the laurel Performance theory: a growing interest in rock art research Archaeology at the intersection between cognitive neuroscience, performance theory, and architecture: from psychoactive substances to rock art and bone shelters Living inside a mammoth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1