利用标签网络的重叠社区结构改进文本聚类

Nuno Cravino, José Luís Devezas, Á. Figueira
{"title":"利用标签网络的重叠社区结构改进文本聚类","authors":"Nuno Cravino, José Luís Devezas, Á. Figueira","doi":"10.1145/2309996.2310036","DOIUrl":null,"url":null,"abstract":"Breadcrumbs is a folksonomy of news clips, where users can aggregate fragments of text taken from online news. Besides the textual content, each news clip contains a set of metadata fields associated with it. User-defined tags are one of the most important of those information fields. Based on a small data set of news clips, we build a network of co-occurrence of tags in news clips, and use it to improve text clustering. We do this by defining a weighted cosine similarity proximity measure that takes into account both the clip vectors and the tag vectors. The tag weight is computed using the related tags that are present in the discovered community. We then use the resulting vectors together with the new distance metric, which allows us to identify socially biased document clusters. Our study indicates that using the structural features of the network of tags leads to a positive impact in the clustering process.","PeriodicalId":91270,"journal":{"name":"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media","volume":"27 2 1","pages":"239-244"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Using the overlapping community structure of a network of tags to improve text clustering\",\"authors\":\"Nuno Cravino, José Luís Devezas, Á. Figueira\",\"doi\":\"10.1145/2309996.2310036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Breadcrumbs is a folksonomy of news clips, where users can aggregate fragments of text taken from online news. Besides the textual content, each news clip contains a set of metadata fields associated with it. User-defined tags are one of the most important of those information fields. Based on a small data set of news clips, we build a network of co-occurrence of tags in news clips, and use it to improve text clustering. We do this by defining a weighted cosine similarity proximity measure that takes into account both the clip vectors and the tag vectors. The tag weight is computed using the related tags that are present in the discovered community. We then use the resulting vectors together with the new distance metric, which allows us to identify socially biased document clusters. Our study indicates that using the structural features of the network of tags leads to a positive impact in the clustering process.\",\"PeriodicalId\":91270,\"journal\":{\"name\":\"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media\",\"volume\":\"27 2 1\",\"pages\":\"239-244\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2309996.2310036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2309996.2310036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

“面包屑”是一个新闻片段分类系统,用户可以将从在线新闻中获取的文本片段聚合在一起。除了文本内容外,每个新闻片段还包含一组与之关联的元数据字段。用户定义的标签是这些信息字段中最重要的一个。基于一个小的新闻片段数据集,我们构建了一个新闻片段中标签共现的网络,并用它来改进文本聚类。我们通过定义一个加权余弦相似性接近度量来做到这一点,该度量同时考虑了剪辑向量和标签向量。使用发现的社区中存在的相关标签计算标签权重。然后,我们将得到的向量与新的距离度量一起使用,这使我们能够识别有社会偏见的文档簇。我们的研究表明,利用标签网络的结构特征会对聚类过程产生积极的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using the overlapping community structure of a network of tags to improve text clustering
Breadcrumbs is a folksonomy of news clips, where users can aggregate fragments of text taken from online news. Besides the textual content, each news clip contains a set of metadata fields associated with it. User-defined tags are one of the most important of those information fields. Based on a small data set of news clips, we build a network of co-occurrence of tags in news clips, and use it to improve text clustering. We do this by defining a weighted cosine similarity proximity measure that takes into account both the clip vectors and the tag vectors. The tag weight is computed using the related tags that are present in the discovered community. We then use the resulting vectors together with the new distance metric, which allows us to identify socially biased document clusters. Our study indicates that using the structural features of the network of tags leads to a positive impact in the clustering process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HT '22: 33rd ACM Conference on Hypertext and Social Media, Barcelona, Spain, 28 June 2022- 1 July 2022 HT '21: 32nd ACM Conference on Hypertext and Social Media, Virtual Event, Ireland, 30 August 2021 - 2 September 2021 HT '20: 31st ACM Conference on Hypertext and Social Media, Virtual Event, USA, July 13-15, 2020 Detecting Changes in Suicide Content Manifested in Social Media Following Celebrity Suicides. QualityRank: assessing quality of wikipedia articles by mutually evaluating editors and texts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1