{"title":"探地雷达探测混凝土中预埋钢筋直径的试验与数值研究","authors":"Istiaque Hasan, N. Yazdani","doi":"10.1155/2016/9714381","DOIUrl":null,"url":null,"abstract":"High frequency ground penetrating radar (GPR) has been widely used to detect and locate rebars in concrete. In this paper, a method of estimating the diameter of steel rebars in concrete with GPR is investigated. The relationship between the maximum normalized positive GPR amplitude from embedded rebars and the rebar diameter was established. Concrete samples with rebars of different diameters were cast and the maximum normalized amplitudes were recorded using a 2.6 GHz GPR antenna. Numerical models using GPRMAX software were developed and verified with the experimental data. The numerical models were then used to investigate the effect of dielectric constant of concrete and concrete cover on the maximum normalized amplitude. The results showed that there is an approximate linear relationship between the rebar diameter and the maximum GPR normalized amplitude. The developed models can be conveniently used to estimate the embedded rebar diameters in existing concrete with GPR scanning; if the concrete is homogeneous, the cover depth is known and the concrete dielectric constant is also known. The models will be highly beneficial in forensic investigations of existing concrete structures with unknown rebar sizes and locations.","PeriodicalId":31263,"journal":{"name":"工程设计学报","volume":"85 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"An Experimental and Numerical Study on Embedded Rebar Diameter in Concrete Using Ground Penetrating Radar\",\"authors\":\"Istiaque Hasan, N. Yazdani\",\"doi\":\"10.1155/2016/9714381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High frequency ground penetrating radar (GPR) has been widely used to detect and locate rebars in concrete. In this paper, a method of estimating the diameter of steel rebars in concrete with GPR is investigated. The relationship between the maximum normalized positive GPR amplitude from embedded rebars and the rebar diameter was established. Concrete samples with rebars of different diameters were cast and the maximum normalized amplitudes were recorded using a 2.6 GHz GPR antenna. Numerical models using GPRMAX software were developed and verified with the experimental data. The numerical models were then used to investigate the effect of dielectric constant of concrete and concrete cover on the maximum normalized amplitude. The results showed that there is an approximate linear relationship between the rebar diameter and the maximum GPR normalized amplitude. The developed models can be conveniently used to estimate the embedded rebar diameters in existing concrete with GPR scanning; if the concrete is homogeneous, the cover depth is known and the concrete dielectric constant is also known. The models will be highly beneficial in forensic investigations of existing concrete structures with unknown rebar sizes and locations.\",\"PeriodicalId\":31263,\"journal\":{\"name\":\"工程设计学报\",\"volume\":\"85 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"工程设计学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1155/2016/9714381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"工程设计学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1155/2016/9714381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
An Experimental and Numerical Study on Embedded Rebar Diameter in Concrete Using Ground Penetrating Radar
High frequency ground penetrating radar (GPR) has been widely used to detect and locate rebars in concrete. In this paper, a method of estimating the diameter of steel rebars in concrete with GPR is investigated. The relationship between the maximum normalized positive GPR amplitude from embedded rebars and the rebar diameter was established. Concrete samples with rebars of different diameters were cast and the maximum normalized amplitudes were recorded using a 2.6 GHz GPR antenna. Numerical models using GPRMAX software were developed and verified with the experimental data. The numerical models were then used to investigate the effect of dielectric constant of concrete and concrete cover on the maximum normalized amplitude. The results showed that there is an approximate linear relationship between the rebar diameter and the maximum GPR normalized amplitude. The developed models can be conveniently used to estimate the embedded rebar diameters in existing concrete with GPR scanning; if the concrete is homogeneous, the cover depth is known and the concrete dielectric constant is also known. The models will be highly beneficial in forensic investigations of existing concrete structures with unknown rebar sizes and locations.
期刊介绍:
Chinese Journal of Engineering Design is a reputable journal published by Zhejiang University Press Co., Ltd. It was founded in December, 1994 as the first internationally cooperative journal in the area of engineering design research. Administrated by the Ministry of Education of China, it is sponsored by both Zhejiang University and Chinese Society of Mechanical Engineering. Zhejiang University Press Co., Ltd. is fully responsible for its bimonthly domestic and oversea publication. Its page is in A4 size. This journal is devoted to reporting most up-to-date achievements of engineering design researches and therefore, to promote the communications of academic researches and their applications to industry. Achievments of great creativity and practicablity are extraordinarily desirable. Aiming at supplying designers, developers and researchers of diversified technical artifacts with valuable references, its content covers all aspects of design theory and methodology, as well as its enabling environment, for instance, creative design, concurrent design, conceptual design, intelligent design, web-based design, reverse engineering design, industrial design, design optimization, tribology, design by biological analogy, virtual reality in design, structural analysis and design, design knowledge representation, design knowledge management, design decision-making systems, etc.