当前和未来遥感卫星任务中太阳光谱辐照度模型的选择

Remote. Sens. Pub Date : 2023-07-03 DOI:10.3390/rs15133391
Fuqin Li, D. Jupp, B. Markham, I. Lau, C. Ong, G. Byrne, M. Thankappan, Simon Oliver, T. Malthus, P. Fearns
{"title":"当前和未来遥感卫星任务中太阳光谱辐照度模型的选择","authors":"Fuqin Li, D. Jupp, B. Markham, I. Lau, C. Ong, G. Byrne, M. Thankappan, Simon Oliver, T. Malthus, P. Fearns","doi":"10.3390/rs15133391","DOIUrl":null,"url":null,"abstract":"The accuracy of surface reflectance estimation for satellite sensors using radiance-based calibrations can depend significantly on the choice of solar spectral irradiance (or solar spectrum) model used for atmospheric correction. Selecting an accurate solar spectrum model is also important for radiance-based sensor calibration and estimation of atmospheric parameters from irradiance observations. Previous research showed that Landsat 8 could be used to evaluate the quality of solar spectrum models. This paper applies the analysis using five previously evaluated and three more recent solar spectrum models using both Landsat 8 (OLI) and Landsat 9 (OLI2). The study was further extended down to 10 nm resolution and a wavelength range from Ultraviolet A (UVA) to shortwave infrared (SWIR) (370–2480 nm) using inversion of field irradiance measurements. The results using OLI and OLI2 as well as the inversion of irradiance measurements were that the more recent Chance and Kurucz (SA2010), Meftah (SOLAR-ISS) and Coddington (TSIS-1) models performed better than all of the previous models. The results were illustrated by simulating dark and bright surface reflectance signatures obtained by atmospheric correction with the different solar spectrum models. The results showed that if the SA2010 model is assumed to be the “true” solar irradiance, using the TSIS-1 or the SOLAR-ISS model will not significantly change the estimated ground reflectance. The other models differ (some to a large extent) in varying wavelength areas.","PeriodicalId":20944,"journal":{"name":"Remote. Sens.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Choice of Solar Spectral Irradiance Model for Current and Future Remote Sensing Satellite Missions\",\"authors\":\"Fuqin Li, D. Jupp, B. Markham, I. Lau, C. Ong, G. Byrne, M. Thankappan, Simon Oliver, T. Malthus, P. Fearns\",\"doi\":\"10.3390/rs15133391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accuracy of surface reflectance estimation for satellite sensors using radiance-based calibrations can depend significantly on the choice of solar spectral irradiance (or solar spectrum) model used for atmospheric correction. Selecting an accurate solar spectrum model is also important for radiance-based sensor calibration and estimation of atmospheric parameters from irradiance observations. Previous research showed that Landsat 8 could be used to evaluate the quality of solar spectrum models. This paper applies the analysis using five previously evaluated and three more recent solar spectrum models using both Landsat 8 (OLI) and Landsat 9 (OLI2). The study was further extended down to 10 nm resolution and a wavelength range from Ultraviolet A (UVA) to shortwave infrared (SWIR) (370–2480 nm) using inversion of field irradiance measurements. The results using OLI and OLI2 as well as the inversion of irradiance measurements were that the more recent Chance and Kurucz (SA2010), Meftah (SOLAR-ISS) and Coddington (TSIS-1) models performed better than all of the previous models. The results were illustrated by simulating dark and bright surface reflectance signatures obtained by atmospheric correction with the different solar spectrum models. The results showed that if the SA2010 model is assumed to be the “true” solar irradiance, using the TSIS-1 or the SOLAR-ISS model will not significantly change the estimated ground reflectance. The other models differ (some to a large extent) in varying wavelength areas.\",\"PeriodicalId\":20944,\"journal\":{\"name\":\"Remote. Sens.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote. Sens.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/rs15133391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote. Sens.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/rs15133391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卫星传感器表面反射率估算的精度在很大程度上取决于用于大气校正的太阳光谱辐照度(或太阳光谱)模型的选择。选择准确的太阳光谱模型对于基于辐射度的传感器校准和根据辐照度观测估计大气参数也很重要。以前的研究表明,Landsat 8可以用来评估太阳光谱模型的质量。本文使用五个先前评估的太阳光谱模型和三个最近使用Landsat 8 (OLI)和Landsat 9 (OLI2)的太阳光谱模型进行分析。该研究进一步扩展到10纳米分辨率,波长范围从紫外线a (UVA)到短波红外(SWIR) (370-2480 nm),使用反演场辐照度测量。利用OLI和OLI2以及辐照度测量的反演结果表明,最近的Chance和Kurucz (SA2010)、Meftah (SOLAR-ISS)和Coddington (TSIS-1)模型比之前的所有模型都表现得更好。用不同的太阳光谱模型模拟大气校正得到的暗面和明面反射率特征,对结果进行了验证。结果表明,如果假设SA2010模型为“真实”太阳辐照度,使用TSIS-1或solar - iss模型不会显著改变估算的地面反射率。其他模型在不同的波长区域有所不同(有些差异很大)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Choice of Solar Spectral Irradiance Model for Current and Future Remote Sensing Satellite Missions
The accuracy of surface reflectance estimation for satellite sensors using radiance-based calibrations can depend significantly on the choice of solar spectral irradiance (or solar spectrum) model used for atmospheric correction. Selecting an accurate solar spectrum model is also important for radiance-based sensor calibration and estimation of atmospheric parameters from irradiance observations. Previous research showed that Landsat 8 could be used to evaluate the quality of solar spectrum models. This paper applies the analysis using five previously evaluated and three more recent solar spectrum models using both Landsat 8 (OLI) and Landsat 9 (OLI2). The study was further extended down to 10 nm resolution and a wavelength range from Ultraviolet A (UVA) to shortwave infrared (SWIR) (370–2480 nm) using inversion of field irradiance measurements. The results using OLI and OLI2 as well as the inversion of irradiance measurements were that the more recent Chance and Kurucz (SA2010), Meftah (SOLAR-ISS) and Coddington (TSIS-1) models performed better than all of the previous models. The results were illustrated by simulating dark and bright surface reflectance signatures obtained by atmospheric correction with the different solar spectrum models. The results showed that if the SA2010 model is assumed to be the “true” solar irradiance, using the TSIS-1 or the SOLAR-ISS model will not significantly change the estimated ground reflectance. The other models differ (some to a large extent) in varying wavelength areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influences of Different Factors on Gravity Wave Activity in the Lower Stratosphere of the Indian Region Estimating Sugarcane Aboveground Biomass and Carbon Stock Using the Combined Time Series of Sentinel Data with Machine Learning Algorithms Dynamic Screening Strategy Based on Feature Graphs for UAV Object and Group Re-Identification The Expanding of Proglacial Lake Amplified the Frontal Ablation of Jiongpu Co Glacier since 1985 Investigation of Light-Scattering Properties of Non-Spherical Sea Salt Aerosol Particles at Varying Levels of Relative Humidity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1