{"title":"食品分类的集成特征方法","authors":"N. Martinel, C. Micheloni, C. Piciarelli","doi":"10.22630/mgv.2017.26.1.2","DOIUrl":null,"url":null,"abstract":"In the last years, several works on automatic image-based food recognition have been proposed, often based on texture feature extraction and classification. However, there is still a lack of proper comparisons to evaluate which approaches are better suited for this specific task. In this work, we adopt a Random Forest classifier to measure the performances of different texture filter banks and feature encoding techniques on three different food image datasets. Comparative results are given to show the performance of each considered approach, as well as to compare the proposed Random Forest classifiers with other feature-based state-of-the-art solutions.","PeriodicalId":39750,"journal":{"name":"Machine Graphics and Vision","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An ensemble feature method for food classification\",\"authors\":\"N. Martinel, C. Micheloni, C. Piciarelli\",\"doi\":\"10.22630/mgv.2017.26.1.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last years, several works on automatic image-based food recognition have been proposed, often based on texture feature extraction and classification. However, there is still a lack of proper comparisons to evaluate which approaches are better suited for this specific task. In this work, we adopt a Random Forest classifier to measure the performances of different texture filter banks and feature encoding techniques on three different food image datasets. Comparative results are given to show the performance of each considered approach, as well as to compare the proposed Random Forest classifiers with other feature-based state-of-the-art solutions.\",\"PeriodicalId\":39750,\"journal\":{\"name\":\"Machine Graphics and Vision\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Graphics and Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22630/mgv.2017.26.1.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Graphics and Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22630/mgv.2017.26.1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An ensemble feature method for food classification
In the last years, several works on automatic image-based food recognition have been proposed, often based on texture feature extraction and classification. However, there is still a lack of proper comparisons to evaluate which approaches are better suited for this specific task. In this work, we adopt a Random Forest classifier to measure the performances of different texture filter banks and feature encoding techniques on three different food image datasets. Comparative results are given to show the performance of each considered approach, as well as to compare the proposed Random Forest classifiers with other feature-based state-of-the-art solutions.
期刊介绍:
Machine GRAPHICS & VISION (MGV) is a refereed international journal, published quarterly, providing a scientific exchange forum and an authoritative source of information in the field of, in general, pictorial information exchange between computers and their environment, including applications of visual and graphical computer systems. The journal concentrates on theoretical and computational models underlying computer generated, analysed, or otherwise processed imagery, in particular: - image processing - scene analysis, modeling, and understanding - machine vision - pattern matching and pattern recognition - image synthesis, including three-dimensional imaging and solid modeling