多次干湿循环后土体开裂沉降的平衡阶段

IF 2.2 4区 工程技术 Q3 ENGINEERING, GEOLOGICAL Environmental geotechnics Pub Date : 2023-04-13 DOI:10.3390/geotechnics3020012
H. Nowamooz
{"title":"多次干湿循环后土体开裂沉降的平衡阶段","authors":"H. Nowamooz","doi":"10.3390/geotechnics3020012","DOIUrl":null,"url":null,"abstract":"This work investigates the equilibrium stage of the crack propagation of a fine-grained soil after several drying and wetting cycles (shrinkage and swelling hysteresis). This stage is found to be crucial in practical engineering since the soil continues to show its irreversible hydraulic settlement, which is a potential risk for some severe structural damages. The shrinkage area and the shrinkage crack area were determined by using the image processing method. For the cyclic experimental investigations, the shrinkage cracks were followed during six months of successive wetting and drying cycles for two samples (with two different initial water contents). These long-term tests were completed by some short term single drying path tests performed on samples prepared at different initial states. The results showed the existence of a unique equilibrium stage at the end of the wetting and drying cycles for the two studied samples. The equilibrated soil subsidence was separated into two parts: the reversible settlement of the equilibrium stage and the irreversible settlements cumulated during successive wetting and drying cycles. At the equilibrium stage, the reversible deformation was 5.9% and the irreversible deformation was 3.8%. A simplified theoretical approach was also used to predict the cracking equilibrium stage and its soil subsidence. The fitted parameters of the theoretical approach for each cycle were stabilized to confirm the existence of this equilibrium stage.","PeriodicalId":11823,"journal":{"name":"Environmental geotechnics","volume":"118 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Equilibrium Stage of Soil Cracking and Subsidence after Several Wetting and Drying Cycles\",\"authors\":\"H. Nowamooz\",\"doi\":\"10.3390/geotechnics3020012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work investigates the equilibrium stage of the crack propagation of a fine-grained soil after several drying and wetting cycles (shrinkage and swelling hysteresis). This stage is found to be crucial in practical engineering since the soil continues to show its irreversible hydraulic settlement, which is a potential risk for some severe structural damages. The shrinkage area and the shrinkage crack area were determined by using the image processing method. For the cyclic experimental investigations, the shrinkage cracks were followed during six months of successive wetting and drying cycles for two samples (with two different initial water contents). These long-term tests were completed by some short term single drying path tests performed on samples prepared at different initial states. The results showed the existence of a unique equilibrium stage at the end of the wetting and drying cycles for the two studied samples. The equilibrated soil subsidence was separated into two parts: the reversible settlement of the equilibrium stage and the irreversible settlements cumulated during successive wetting and drying cycles. At the equilibrium stage, the reversible deformation was 5.9% and the irreversible deformation was 3.8%. A simplified theoretical approach was also used to predict the cracking equilibrium stage and its soil subsidence. The fitted parameters of the theoretical approach for each cycle were stabilized to confirm the existence of this equilibrium stage.\",\"PeriodicalId\":11823,\"journal\":{\"name\":\"Environmental geotechnics\",\"volume\":\"118 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/geotechnics3020012\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental geotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/geotechnics3020012","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了细粒土在经过多次干湿循环(收缩和膨胀滞后)后裂纹扩展的平衡阶段。这一阶段在实际工程中是至关重要的,因为土壤会继续表现出不可逆的水力沉降,这是一些严重结构破坏的潜在风险。采用图像处理方法确定了收缩区域和收缩裂纹区域。在循环试验研究中,对两种不同初始含水量的样品进行了为期6个月的连续干湿循环。这些长期试验是通过对不同初始状态下制备的样品进行短期单一干燥路径试验来完成的。结果表明,在两个研究样品的干湿循环结束时,存在一个独特的平衡阶段。将平衡沉降分为平衡阶段的可逆沉降和连续干湿循环累积的不可逆沉降两部分。平衡阶段可逆变形为5.9%,不可逆变形为3.8%。并采用简化的理论方法预测了裂缝平衡阶段及其土体沉降。对各周期理论方法的拟合参数进行了稳定,证实了该平衡阶段的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Equilibrium Stage of Soil Cracking and Subsidence after Several Wetting and Drying Cycles
This work investigates the equilibrium stage of the crack propagation of a fine-grained soil after several drying and wetting cycles (shrinkage and swelling hysteresis). This stage is found to be crucial in practical engineering since the soil continues to show its irreversible hydraulic settlement, which is a potential risk for some severe structural damages. The shrinkage area and the shrinkage crack area were determined by using the image processing method. For the cyclic experimental investigations, the shrinkage cracks were followed during six months of successive wetting and drying cycles for two samples (with two different initial water contents). These long-term tests were completed by some short term single drying path tests performed on samples prepared at different initial states. The results showed the existence of a unique equilibrium stage at the end of the wetting and drying cycles for the two studied samples. The equilibrated soil subsidence was separated into two parts: the reversible settlement of the equilibrium stage and the irreversible settlements cumulated during successive wetting and drying cycles. At the equilibrium stage, the reversible deformation was 5.9% and the irreversible deformation was 3.8%. A simplified theoretical approach was also used to predict the cracking equilibrium stage and its soil subsidence. The fitted parameters of the theoretical approach for each cycle were stabilized to confirm the existence of this equilibrium stage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental geotechnics
Environmental geotechnics Environmental Science-Water Science and Technology
CiteScore
6.20
自引率
18.20%
发文量
53
期刊介绍: In 21st century living, engineers and researchers need to deal with growing problems related to climate change, oil and water storage, handling, storage and disposal of toxic and hazardous wastes, remediation of contaminated sites, sustainable development and energy derived from the ground. Environmental Geotechnics aims to disseminate knowledge and provides a fresh perspective regarding the basic concepts, theory, techniques and field applicability of innovative testing and analysis methodologies and engineering practices in geoenvironmental engineering. The journal''s Editor in Chief is a Member of the Committee on Publication Ethics. All relevant papers are carefully considered, vetted by a distinguished team of international experts and rapidly published. Full research papers, short communications and comprehensive review articles are published under the following broad subject categories: geochemistry and geohydrology, soil and rock physics, biological processes in soil, soil-atmosphere interaction, electrical, electromagnetic and thermal characteristics of porous media, waste management, utilization of wastes, multiphase science, landslide wasting, soil and water conservation, sensor development and applications, the impact of climatic changes on geoenvironmental, geothermal/ground-source energy, carbon sequestration, oil and gas extraction techniques, uncertainty, reliability and risk, monitoring and forensic geotechnics.
期刊最新文献
Ecological flexible protection method of expansive soil slope under rainfall Briefing: Intensive inland aquaculture ponds: challenges and research opportunities 1D Damage constitutive model and small strain characteristics of fly ash–cementitious iron tailings powder under static and dynamic loading Experimental investigation on gas migration behaviour in unsaturated sand-clay mixture Dry shrinkage cracking and permeability of biopolymer-modified clay under dry-wet cycles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1