{"title":"建立了人心脏左心室收缩过程的力学模型","authors":"V. Tregubov, N. K. Egorova","doi":"10.21638/11701/spbu10.2022.309","DOIUrl":null,"url":null,"abstract":"A detailed analysis of previous works on modeling the left ventricle (LV) of the human heart, starting with mechanical models in the form of the simplest three-dimensional figures (cylinder, sphere, ellipsoid of rotation) and ending with models using real contours of the human heart obtained by ultrasound examination of the human heart. A way of constructing a mechanical LV model based on the processing of its dynamic images obtained using computer and magnetic resonance imaging was proposed. Digitization of these images was carried out using numerical methods developed to create a finite element model were implemented in the CMISS system, which allows the use of finite element analysis methods to solve various complex problems. To avoid the need to operate with huge arrays of numbers (up to 10 thousand numerical values at each time of the MRI study) characteristic points of the three-dimensional LV image were selected and spline interpolation of the model framework written in C++ using the Cmgui module was performed. To describe the work of the mechanical model of LV reduction, the main components of this process were identified: transverse compression, longitudinal contraction and twisting. To describe them, simple mathematical characteristics were used.","PeriodicalId":43738,"journal":{"name":"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya","volume":"129 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of a mechanical model of the human heart left ventricle in the process of its contraction\",\"authors\":\"V. Tregubov, N. K. Egorova\",\"doi\":\"10.21638/11701/spbu10.2022.309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A detailed analysis of previous works on modeling the left ventricle (LV) of the human heart, starting with mechanical models in the form of the simplest three-dimensional figures (cylinder, sphere, ellipsoid of rotation) and ending with models using real contours of the human heart obtained by ultrasound examination of the human heart. A way of constructing a mechanical LV model based on the processing of its dynamic images obtained using computer and magnetic resonance imaging was proposed. Digitization of these images was carried out using numerical methods developed to create a finite element model were implemented in the CMISS system, which allows the use of finite element analysis methods to solve various complex problems. To avoid the need to operate with huge arrays of numbers (up to 10 thousand numerical values at each time of the MRI study) characteristic points of the three-dimensional LV image were selected and spline interpolation of the model framework written in C++ using the Cmgui module was performed. To describe the work of the mechanical model of LV reduction, the main components of this process were identified: transverse compression, longitudinal contraction and twisting. To describe them, simple mathematical characteristics were used.\",\"PeriodicalId\":43738,\"journal\":{\"name\":\"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya\",\"volume\":\"129 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21638/11701/spbu10.2022.309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21638/11701/spbu10.2022.309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Construction of a mechanical model of the human heart left ventricle in the process of its contraction
A detailed analysis of previous works on modeling the left ventricle (LV) of the human heart, starting with mechanical models in the form of the simplest three-dimensional figures (cylinder, sphere, ellipsoid of rotation) and ending with models using real contours of the human heart obtained by ultrasound examination of the human heart. A way of constructing a mechanical LV model based on the processing of its dynamic images obtained using computer and magnetic resonance imaging was proposed. Digitization of these images was carried out using numerical methods developed to create a finite element model were implemented in the CMISS system, which allows the use of finite element analysis methods to solve various complex problems. To avoid the need to operate with huge arrays of numbers (up to 10 thousand numerical values at each time of the MRI study) characteristic points of the three-dimensional LV image were selected and spline interpolation of the model framework written in C++ using the Cmgui module was performed. To describe the work of the mechanical model of LV reduction, the main components of this process were identified: transverse compression, longitudinal contraction and twisting. To describe them, simple mathematical characteristics were used.
期刊介绍:
The journal is the prime outlet for the findings of scientists from the Faculty of applied mathematics and control processes of St. Petersburg State University. It publishes original contributions in all areas of applied mathematics, computer science and control. Vestnik St. Petersburg University: Applied Mathematics. Computer Science. Control Processes features articles that cover the major areas of applied mathematics, computer science and control.