混合机器学习和地理信息系统方法——一个平交道口碰撞数据分析的案例

IF 0.5 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Advances in Data Science and Adaptive Analysis Pub Date : 2020-01-01 DOI:10.1142/s2424922x20500035
A. Lasisi, Pengyu Li, Jian Chen
{"title":"混合机器学习和地理信息系统方法——一个平交道口碰撞数据分析的案例","authors":"A. Lasisi, Pengyu Li, Jian Chen","doi":"10.1142/s2424922x20500035","DOIUrl":null,"url":null,"abstract":"Highway-rail grade crossing (HRGC) accidents continue to be a major source of transportation casualties in the United States. This can be attributed to increased road and rail operations and/or lack of adequate safety programs based on comprehensive HRGC accidents analysis amidst other reasons. The focus of this study is to predict HRGC accidents in a given rail network based on a machine learning analysis of a similar network with cognate attributes. This study is an improvement on past studies that either attempt to predict accidents in a given HRGC or spatially analyze HRGC accidents for a particular rail line. In this study, a case for a hybrid machine learning and geographic information systems (GIS) approach is presented in a large rail network. The study involves collection and wrangling of relevant data from various sources; exploratory analysis, and supervised machine learning (classification and regression) of HRGC data from 2008 to 2017 in California. The models developed from this analysis were used to make binary predictions [98.9% accuracy & 0.9838 Receiver Operating Characteristic (ROC) score] and quantitative estimations of HRGC casualties in a similar network over the next 10 years. While results are spatially presented in GIS, this novel hybrid application of machine learning and GIS in HRGC accidents’ analysis will help stakeholders to pro-actively engage with casualties through addressing major accident causes as identified in this study. This paper is concluded with a Systems-Action-Management (SAM) approach based on text analysis of HRGC accident risk reports from Federal Railroad Administration.","PeriodicalId":47145,"journal":{"name":"Advances in Data Science and Adaptive Analysis","volume":"7 1 1","pages":"2050003:1-2050003:30"},"PeriodicalIF":0.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hybrid Machine Learning and Geographic Information Systems Approach - A Case for Grade Crossing Crash Data Analysis\",\"authors\":\"A. Lasisi, Pengyu Li, Jian Chen\",\"doi\":\"10.1142/s2424922x20500035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Highway-rail grade crossing (HRGC) accidents continue to be a major source of transportation casualties in the United States. This can be attributed to increased road and rail operations and/or lack of adequate safety programs based on comprehensive HRGC accidents analysis amidst other reasons. The focus of this study is to predict HRGC accidents in a given rail network based on a machine learning analysis of a similar network with cognate attributes. This study is an improvement on past studies that either attempt to predict accidents in a given HRGC or spatially analyze HRGC accidents for a particular rail line. In this study, a case for a hybrid machine learning and geographic information systems (GIS) approach is presented in a large rail network. The study involves collection and wrangling of relevant data from various sources; exploratory analysis, and supervised machine learning (classification and regression) of HRGC data from 2008 to 2017 in California. The models developed from this analysis were used to make binary predictions [98.9% accuracy & 0.9838 Receiver Operating Characteristic (ROC) score] and quantitative estimations of HRGC casualties in a similar network over the next 10 years. While results are spatially presented in GIS, this novel hybrid application of machine learning and GIS in HRGC accidents’ analysis will help stakeholders to pro-actively engage with casualties through addressing major accident causes as identified in this study. This paper is concluded with a Systems-Action-Management (SAM) approach based on text analysis of HRGC accident risk reports from Federal Railroad Administration.\",\"PeriodicalId\":47145,\"journal\":{\"name\":\"Advances in Data Science and Adaptive Analysis\",\"volume\":\"7 1 1\",\"pages\":\"2050003:1-2050003:30\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Data Science and Adaptive Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2424922x20500035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Science and Adaptive Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2424922x20500035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

在美国,公路-铁路平交道口(HRGC)事故仍然是交通伤亡的主要来源。这可归因于公路和铁路运营的增加和/或缺乏基于全面HRGC事故分析的适当安全计划以及其他原因。本研究的重点是基于对具有同源属性的类似网络的机器学习分析,预测给定铁路网络中的HRGC事故。这项研究是对过去的研究的改进,这些研究要么试图预测给定HRGC中的事故,要么对特定铁路线的HRGC事故进行空间分析。在这项研究中,提出了一个大型铁路网络中混合机器学习和地理信息系统(GIS)方法的案例。这项研究包括从各种来源收集和整理相关数据;对2008年至2017年加州HRGC数据进行探索性分析和监督机器学习(分类和回归)。根据该分析建立的模型用于二元预测[98.9%准确率和0.9838受试者工作特征(ROC)评分]和定量估计未来10年类似网络中的HRGC伤亡。虽然结果在GIS中以空间形式呈现,但这种机器学习和GIS在HRGC事故分析中的新型混合应用将帮助利益相关者通过解决本研究中确定的主要事故原因,积极参与伤亡。本文以美国联邦铁路局HRGC事故风险报告文本分析为基础,采用系统-行动管理(SAM)方法进行总结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid Machine Learning and Geographic Information Systems Approach - A Case for Grade Crossing Crash Data Analysis
Highway-rail grade crossing (HRGC) accidents continue to be a major source of transportation casualties in the United States. This can be attributed to increased road and rail operations and/or lack of adequate safety programs based on comprehensive HRGC accidents analysis amidst other reasons. The focus of this study is to predict HRGC accidents in a given rail network based on a machine learning analysis of a similar network with cognate attributes. This study is an improvement on past studies that either attempt to predict accidents in a given HRGC or spatially analyze HRGC accidents for a particular rail line. In this study, a case for a hybrid machine learning and geographic information systems (GIS) approach is presented in a large rail network. The study involves collection and wrangling of relevant data from various sources; exploratory analysis, and supervised machine learning (classification and regression) of HRGC data from 2008 to 2017 in California. The models developed from this analysis were used to make binary predictions [98.9% accuracy & 0.9838 Receiver Operating Characteristic (ROC) score] and quantitative estimations of HRGC casualties in a similar network over the next 10 years. While results are spatially presented in GIS, this novel hybrid application of machine learning and GIS in HRGC accidents’ analysis will help stakeholders to pro-actively engage with casualties through addressing major accident causes as identified in this study. This paper is concluded with a Systems-Action-Management (SAM) approach based on text analysis of HRGC accident risk reports from Federal Railroad Administration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Data Science and Adaptive Analysis
Advances in Data Science and Adaptive Analysis MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
0.00%
发文量
13
期刊最新文献
Assessment Of Mars Analog Habitation Plans Using Network Analysis Methodologies A Novel Genetic-Inspired Binary Firefly Algorithm for Feature Selection in the Prediction of Cervical Cancer Big Data Analytics for Predictive System Maintenance Using Machine Learning Models Data Mining for Estimating the Impact of Physical Activity Levels on the Health-Related Well-Being A Novel Autoencoder Deep Architecture for Detecting the Outlier in Heterogeneous Data Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1