高外加电场作用下双层绝缘结构中空间电荷的动态行为

Ling Zhang, Yuxuan Xu, Quzong Gesang, Zhichao Qiao, Bo Zhang, Yuanxiang Zhou
{"title":"高外加电场作用下双层绝缘结构中空间电荷的动态行为","authors":"Ling Zhang, Yuxuan Xu, Quzong Gesang, Zhichao Qiao, Bo Zhang, Yuanxiang Zhou","doi":"10.1109/ICEMPE51623.2021.9509147","DOIUrl":null,"url":null,"abstract":"Compared with single-layer insulation, multilayer insulation structures have more forms and features, thus are widely used in the fields of oil-paper insulation, power cables and communication cables. However, there are fewer researches conducted on the space charge characteristics of multi-layer insulation structures, and the analysis of the interface space charge in those structures is not in-depth. This article takes the ‘skin-foam-skin’ insulation structure of the frequency-shift pulse track signal cables as an example, which are commonly used in railway systems. We carried out room-temperature space charge measurement of the three parts of the ‘skin-foam-skin’ insulation including LDPE, FPE, HDPE, and the double-layer structure of FPE/HDPE and FPE/LDPE separately, based on pulse electro-acoustic (PEA) method. Meanwhile, thermal property of PE samples was also tested. The result shows that a large amount of positive charge injection and accumulation occurred in the single-layer HDPE films. And due to the difference in the carrier mobility during the depolarization process, there was obvious positive charge accumulation near the interface of the FPE/LDPE double-layer structure. Besides, a small amount of negative charge is accumulated at the interface of the FPE/HDPE double-layer structure. This result not only provides a reference for the characterization and evaluation of the space charge characteristics of multi-layer insulation materials, but also provides basic data support for the subsequent selection and extraction of aging characteristics of multi-layer insulation.","PeriodicalId":7083,"journal":{"name":"2021 International Conference on Electrical Materials and Power Equipment (ICEMPE)","volume":"24 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Behavior of Space Charge in Double-layer Insulation Structure under High External Electric Field\",\"authors\":\"Ling Zhang, Yuxuan Xu, Quzong Gesang, Zhichao Qiao, Bo Zhang, Yuanxiang Zhou\",\"doi\":\"10.1109/ICEMPE51623.2021.9509147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compared with single-layer insulation, multilayer insulation structures have more forms and features, thus are widely used in the fields of oil-paper insulation, power cables and communication cables. However, there are fewer researches conducted on the space charge characteristics of multi-layer insulation structures, and the analysis of the interface space charge in those structures is not in-depth. This article takes the ‘skin-foam-skin’ insulation structure of the frequency-shift pulse track signal cables as an example, which are commonly used in railway systems. We carried out room-temperature space charge measurement of the three parts of the ‘skin-foam-skin’ insulation including LDPE, FPE, HDPE, and the double-layer structure of FPE/HDPE and FPE/LDPE separately, based on pulse electro-acoustic (PEA) method. Meanwhile, thermal property of PE samples was also tested. The result shows that a large amount of positive charge injection and accumulation occurred in the single-layer HDPE films. And due to the difference in the carrier mobility during the depolarization process, there was obvious positive charge accumulation near the interface of the FPE/LDPE double-layer structure. Besides, a small amount of negative charge is accumulated at the interface of the FPE/HDPE double-layer structure. This result not only provides a reference for the characterization and evaluation of the space charge characteristics of multi-layer insulation materials, but also provides basic data support for the subsequent selection and extraction of aging characteristics of multi-layer insulation.\",\"PeriodicalId\":7083,\"journal\":{\"name\":\"2021 International Conference on Electrical Materials and Power Equipment (ICEMPE)\",\"volume\":\"24 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Electrical Materials and Power Equipment (ICEMPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEMPE51623.2021.9509147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Electrical Materials and Power Equipment (ICEMPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEMPE51623.2021.9509147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多层绝缘结构与单层绝缘相比,具有更多的形式和特点,广泛应用于油纸绝缘、电力电缆、通信电缆等领域。然而,对多层绝缘结构空间电荷特性的研究较少,对多层绝缘结构中界面空间电荷的分析也不深入。本文以铁路系统中常用的移频脉冲轨道信号电缆的“表皮-泡沫-表皮”绝缘结构为例。基于脉冲电声(PEA)方法,分别对LDPE、FPE、HDPE、FPE/HDPE和FPE/LDPE双层结构的“皮肤-泡沫-皮肤”绝缘层进行了室温空间电荷测量。同时对PE样品的热性能进行了测试。结果表明,单层HDPE薄膜中存在大量的正电荷注入和积累。由于去极化过程中载流子迁移率的差异,FPE/LDPE双层结构界面附近存在明显的正电荷积累。此外,FPE/HDPE双层结构的界面处有少量的负电荷积累。该结果不仅为多层绝缘材料空间电荷特性的表征和评价提供了参考,也为后续多层绝缘老化特性的选择和提取提供了基础数据支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic Behavior of Space Charge in Double-layer Insulation Structure under High External Electric Field
Compared with single-layer insulation, multilayer insulation structures have more forms and features, thus are widely used in the fields of oil-paper insulation, power cables and communication cables. However, there are fewer researches conducted on the space charge characteristics of multi-layer insulation structures, and the analysis of the interface space charge in those structures is not in-depth. This article takes the ‘skin-foam-skin’ insulation structure of the frequency-shift pulse track signal cables as an example, which are commonly used in railway systems. We carried out room-temperature space charge measurement of the three parts of the ‘skin-foam-skin’ insulation including LDPE, FPE, HDPE, and the double-layer structure of FPE/HDPE and FPE/LDPE separately, based on pulse electro-acoustic (PEA) method. Meanwhile, thermal property of PE samples was also tested. The result shows that a large amount of positive charge injection and accumulation occurred in the single-layer HDPE films. And due to the difference in the carrier mobility during the depolarization process, there was obvious positive charge accumulation near the interface of the FPE/LDPE double-layer structure. Besides, a small amount of negative charge is accumulated at the interface of the FPE/HDPE double-layer structure. This result not only provides a reference for the characterization and evaluation of the space charge characteristics of multi-layer insulation materials, but also provides basic data support for the subsequent selection and extraction of aging characteristics of multi-layer insulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Thermal Stress Analysis of Epoxy Resin Encapsulated Solid State Transformer's Cracking Caused by Temperature Shock Study on the Arc Characteristics of Insulator Creeping Discharge under High Velocity Air Application of an improved ultraviolet spectrophotometry technology for the determination of antioxidants in natural ester liquids Noise analysis and device improvement of composite probe for space charge measuring based on PIPWP method Research on high voltage capacitor partial discharge detection with portable oscillating wave circuit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1