Daria A. Dashkova, Aleksandra R. Esimbekova, K. V. Kotova, T. Ruksha
{"title":"达卡巴嗪诱导黑色素瘤细胞中mir -155-5p介导的p53含量升高","authors":"Daria A. Dashkova, Aleksandra R. Esimbekova, K. V. Kotova, T. Ruksha","doi":"10.17816/onco107182","DOIUrl":null,"url":null,"abstract":"BACKGROUND: Cellular senescence is a stress response, triggered by various stimuli such as chemotherapy treatment and causes G0/G1 cell cycle arrest followed by the production of a senescence associated secretory phenotype. p53 considered to be a modulator of these events although the precise mechanisms of it remains not clear. \nAIMS: To determine the non-apoptotic functions of the p53 protein the formation of the senescence associated secretory phenotype phenotype of melanoma cells under the treatment of the cytostatic agent dacarbazine. \nMATERIALS AND METHODS: The study was conducted on BRO and SK-MEL-2 skin melanoma cell lines. Melanoma cells were were treated by cytostatic agent dacarbazine. Then immunocytochemical study was performed to determine the proportion of G0-positive cells and the expression of the tumor suppressor protein p53. A bioinformatic analysis was accomplished to identify for p53 regulators with determining of miR-155-5p levels in exosomes released by dacarbazine-treated melanoma cells. \nRESULTS: The cytostatic drug dacarbazine increases the proportion of cells residing in the G0 phase of the cell cycle. Onco-microRNA miR-155-5p was expressed in the exosomes of the two studied cell lines BRO and SK-MEL-2 of skin melanoma. Changes in the expression level of p53 correlate with changes in miR-155-5p microRNA expression. The absence of changes in p53 expression in BRO melanoma cells may be due to the absence of changes in miR-155-5p expression levels. In the BRO cell line, no changes in the expression of the oncosuppressor p53 were observed with an increased percentage of G0-positive cells, which may be associated with the activation of other mechanisms of cell cycle arrest in the G0/G1 phase. \nCONCLUSIONS: Heterogeneous effect of the cytostatic agent dacarbazine on melanoma cells was revealed. For the SK-MEL-2 cell line, dacarbazine induces the release of senescence associated secretory phenotype by inhibiting exosomal production of miR-155-5p, which activates the p53 oncosuppressor, which was not observed in the BRO line.","PeriodicalId":52396,"journal":{"name":"Russian Journal of Pediatric Hematology and Oncology","volume":"212 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MiR-155-5p-mediated increase in p53 content induced by dacarbazine in melanoma cells\",\"authors\":\"Daria A. Dashkova, Aleksandra R. Esimbekova, K. V. Kotova, T. Ruksha\",\"doi\":\"10.17816/onco107182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND: Cellular senescence is a stress response, triggered by various stimuli such as chemotherapy treatment and causes G0/G1 cell cycle arrest followed by the production of a senescence associated secretory phenotype. p53 considered to be a modulator of these events although the precise mechanisms of it remains not clear. \\nAIMS: To determine the non-apoptotic functions of the p53 protein the formation of the senescence associated secretory phenotype phenotype of melanoma cells under the treatment of the cytostatic agent dacarbazine. \\nMATERIALS AND METHODS: The study was conducted on BRO and SK-MEL-2 skin melanoma cell lines. Melanoma cells were were treated by cytostatic agent dacarbazine. Then immunocytochemical study was performed to determine the proportion of G0-positive cells and the expression of the tumor suppressor protein p53. A bioinformatic analysis was accomplished to identify for p53 regulators with determining of miR-155-5p levels in exosomes released by dacarbazine-treated melanoma cells. \\nRESULTS: The cytostatic drug dacarbazine increases the proportion of cells residing in the G0 phase of the cell cycle. Onco-microRNA miR-155-5p was expressed in the exosomes of the two studied cell lines BRO and SK-MEL-2 of skin melanoma. Changes in the expression level of p53 correlate with changes in miR-155-5p microRNA expression. The absence of changes in p53 expression in BRO melanoma cells may be due to the absence of changes in miR-155-5p expression levels. In the BRO cell line, no changes in the expression of the oncosuppressor p53 were observed with an increased percentage of G0-positive cells, which may be associated with the activation of other mechanisms of cell cycle arrest in the G0/G1 phase. \\nCONCLUSIONS: Heterogeneous effect of the cytostatic agent dacarbazine on melanoma cells was revealed. For the SK-MEL-2 cell line, dacarbazine induces the release of senescence associated secretory phenotype by inhibiting exosomal production of miR-155-5p, which activates the p53 oncosuppressor, which was not observed in the BRO line.\",\"PeriodicalId\":52396,\"journal\":{\"name\":\"Russian Journal of Pediatric Hematology and Oncology\",\"volume\":\"212 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Pediatric Hematology and Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17816/onco107182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Pediatric Hematology and Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17816/onco107182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
MiR-155-5p-mediated increase in p53 content induced by dacarbazine in melanoma cells
BACKGROUND: Cellular senescence is a stress response, triggered by various stimuli such as chemotherapy treatment and causes G0/G1 cell cycle arrest followed by the production of a senescence associated secretory phenotype. p53 considered to be a modulator of these events although the precise mechanisms of it remains not clear.
AIMS: To determine the non-apoptotic functions of the p53 protein the formation of the senescence associated secretory phenotype phenotype of melanoma cells under the treatment of the cytostatic agent dacarbazine.
MATERIALS AND METHODS: The study was conducted on BRO and SK-MEL-2 skin melanoma cell lines. Melanoma cells were were treated by cytostatic agent dacarbazine. Then immunocytochemical study was performed to determine the proportion of G0-positive cells and the expression of the tumor suppressor protein p53. A bioinformatic analysis was accomplished to identify for p53 regulators with determining of miR-155-5p levels in exosomes released by dacarbazine-treated melanoma cells.
RESULTS: The cytostatic drug dacarbazine increases the proportion of cells residing in the G0 phase of the cell cycle. Onco-microRNA miR-155-5p was expressed in the exosomes of the two studied cell lines BRO and SK-MEL-2 of skin melanoma. Changes in the expression level of p53 correlate with changes in miR-155-5p microRNA expression. The absence of changes in p53 expression in BRO melanoma cells may be due to the absence of changes in miR-155-5p expression levels. In the BRO cell line, no changes in the expression of the oncosuppressor p53 were observed with an increased percentage of G0-positive cells, which may be associated with the activation of other mechanisms of cell cycle arrest in the G0/G1 phase.
CONCLUSIONS: Heterogeneous effect of the cytostatic agent dacarbazine on melanoma cells was revealed. For the SK-MEL-2 cell line, dacarbazine induces the release of senescence associated secretory phenotype by inhibiting exosomal production of miR-155-5p, which activates the p53 oncosuppressor, which was not observed in the BRO line.