Yonghua Peng, Guohuai Lin, Guangdeng Chen, Hongyi Li
{"title":"随机非线性质量的动态事件触发人在环编队控制","authors":"Yonghua Peng, Guohuai Lin, Guangdeng Chen, Hongyi Li","doi":"10.1051/sands/2023024","DOIUrl":null,"url":null,"abstract":"The dynamic event-triggered (DET) formation control problem of a class of stochastic nonlinear multi-agent systems (MASs) with full state constraints is investigated in this article. Supposing that the human operator sends commands to the leader as control input signals, all followers keep formation through network topology communication. Under the command-filter-based backstepping technique, the radial basis function neural networks (RBF NNs) and the barrier Lyapunov function (BLF) are utilized to resolve the problems of unknown nonlinear terms and full state constraints, respectively. Furthermore, a DET control mechanism is proposed to reduce the occupation of communication bandwidth. The presented distributed formation control strategy guarantees that all signals of the MASs are semi-globally uniformly ultimately bounded (SGUUB) in probability. Finally, the feasibility of the theoretical research result is demonstrated by a simulation example.","PeriodicalId":79641,"journal":{"name":"Hospital security and safety management","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamic event-triggered-based human-in-the-loop formation control for stochastic nonlinear MASs\",\"authors\":\"Yonghua Peng, Guohuai Lin, Guangdeng Chen, Hongyi Li\",\"doi\":\"10.1051/sands/2023024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamic event-triggered (DET) formation control problem of a class of stochastic nonlinear multi-agent systems (MASs) with full state constraints is investigated in this article. Supposing that the human operator sends commands to the leader as control input signals, all followers keep formation through network topology communication. Under the command-filter-based backstepping technique, the radial basis function neural networks (RBF NNs) and the barrier Lyapunov function (BLF) are utilized to resolve the problems of unknown nonlinear terms and full state constraints, respectively. Furthermore, a DET control mechanism is proposed to reduce the occupation of communication bandwidth. The presented distributed formation control strategy guarantees that all signals of the MASs are semi-globally uniformly ultimately bounded (SGUUB) in probability. Finally, the feasibility of the theoretical research result is demonstrated by a simulation example.\",\"PeriodicalId\":79641,\"journal\":{\"name\":\"Hospital security and safety management\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hospital security and safety management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/sands/2023024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hospital security and safety management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/sands/2023024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic event-triggered-based human-in-the-loop formation control for stochastic nonlinear MASs
The dynamic event-triggered (DET) formation control problem of a class of stochastic nonlinear multi-agent systems (MASs) with full state constraints is investigated in this article. Supposing that the human operator sends commands to the leader as control input signals, all followers keep formation through network topology communication. Under the command-filter-based backstepping technique, the radial basis function neural networks (RBF NNs) and the barrier Lyapunov function (BLF) are utilized to resolve the problems of unknown nonlinear terms and full state constraints, respectively. Furthermore, a DET control mechanism is proposed to reduce the occupation of communication bandwidth. The presented distributed formation control strategy guarantees that all signals of the MASs are semi-globally uniformly ultimately bounded (SGUUB) in probability. Finally, the feasibility of the theoretical research result is demonstrated by a simulation example.