随机非线性质量的动态事件触发人在环编队控制

Yonghua Peng, Guohuai Lin, Guangdeng Chen, Hongyi Li
{"title":"随机非线性质量的动态事件触发人在环编队控制","authors":"Yonghua Peng, Guohuai Lin, Guangdeng Chen, Hongyi Li","doi":"10.1051/sands/2023024","DOIUrl":null,"url":null,"abstract":"The dynamic event-triggered (DET) formation control problem of a class of stochastic nonlinear multi-agent systems (MASs) with full state constraints is investigated in this article. Supposing that the human operator sends commands to the leader as control input signals, all followers keep formation through network topology communication. Under the command-filter-based backstepping technique, the radial basis function neural networks (RBF NNs) and the barrier Lyapunov function (BLF) are utilized to resolve the problems of unknown nonlinear terms and full state constraints, respectively. Furthermore, a DET control mechanism is proposed to reduce the occupation of communication bandwidth. The presented distributed formation control strategy guarantees that all signals of the MASs are semi-globally uniformly ultimately bounded (SGUUB) in probability. Finally, the feasibility of the theoretical research result is demonstrated by a simulation example.","PeriodicalId":79641,"journal":{"name":"Hospital security and safety management","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamic event-triggered-based human-in-the-loop formation control for stochastic nonlinear MASs\",\"authors\":\"Yonghua Peng, Guohuai Lin, Guangdeng Chen, Hongyi Li\",\"doi\":\"10.1051/sands/2023024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamic event-triggered (DET) formation control problem of a class of stochastic nonlinear multi-agent systems (MASs) with full state constraints is investigated in this article. Supposing that the human operator sends commands to the leader as control input signals, all followers keep formation through network topology communication. Under the command-filter-based backstepping technique, the radial basis function neural networks (RBF NNs) and the barrier Lyapunov function (BLF) are utilized to resolve the problems of unknown nonlinear terms and full state constraints, respectively. Furthermore, a DET control mechanism is proposed to reduce the occupation of communication bandwidth. The presented distributed formation control strategy guarantees that all signals of the MASs are semi-globally uniformly ultimately bounded (SGUUB) in probability. Finally, the feasibility of the theoretical research result is demonstrated by a simulation example.\",\"PeriodicalId\":79641,\"journal\":{\"name\":\"Hospital security and safety management\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hospital security and safety management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/sands/2023024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hospital security and safety management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/sands/2023024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了一类具有全状态约束的随机非线性多智能体系统的动态事件触发(DET)编队控制问题。假设人类操作者向leader发送命令作为控制输入信号,所有follower通过网络拓扑通信保持队形。在基于命令滤波的反演技术下,分别利用径向基函数神经网络(RBF nn)和屏障李雅普诺夫函数(BLF)来解决未知非线性项和全状态约束问题。在此基础上,提出了一种DET控制机制,以减少对通信带宽的占用。所提出的分布式编队控制策略保证了群的所有信号在概率上是半全局一致最终有界的。最后,通过仿真算例验证了理论研究结果的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic event-triggered-based human-in-the-loop formation control for stochastic nonlinear MASs
The dynamic event-triggered (DET) formation control problem of a class of stochastic nonlinear multi-agent systems (MASs) with full state constraints is investigated in this article. Supposing that the human operator sends commands to the leader as control input signals, all followers keep formation through network topology communication. Under the command-filter-based backstepping technique, the radial basis function neural networks (RBF NNs) and the barrier Lyapunov function (BLF) are utilized to resolve the problems of unknown nonlinear terms and full state constraints, respectively. Furthermore, a DET control mechanism is proposed to reduce the occupation of communication bandwidth. The presented distributed formation control strategy guarantees that all signals of the MASs are semi-globally uniformly ultimately bounded (SGUUB) in probability. Finally, the feasibility of the theoretical research result is demonstrated by a simulation example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preface: Security and Safety in Unmanned Systems Optimization for UAV-Assisted Simultaneous Transmission and Reception Communications in the Existence of Malicious Jammers Enabling Space-Air Integration: A Satellite-UAV Networking Authentication Scheme Adaptive Cooperative Secure Control of Networked Multiple Unmanned Systems under FDI Attacks Optimal DoS Attack on Multi-Channel Cyber-Physical Systems: A Stackelberg Game Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1