{"title":"欧盟MSCA ITN项目SMARTINCS的经验教训:水泥系统中的智能、多功能、先进修复技术","authors":"N. De Belie, Tim Van Mullem","doi":"10.1051/matecconf/202337801001","DOIUrl":null,"url":null,"abstract":"Extended abstract. To avoid the negative effects of concrete cracking on the durability of our buildings and infrastructure, different approaches to provide concrete with self-healing properties have been designed over the last decades. Self-healing concrete should allow to guarantee the performance of a structure over its service life, preventing costly intensive repair and maintenance operations. By combined experimental research and coupled multiscale models, SMARTINCS moves beyond the state-of-the-art with respect to (1) the efficiency of self-healing concrete, at acceptable cost for real-scale applications; (2) the multi-functionality (corrosion inhibition, self-sensing) of the self-healing solutions; and (3) the technologies for local application of healing agents in high risk zones or in high value grouts and repair products. The developments of SMARTINCS will help society to build and renovate in a resource efficient way and will accelerate the shift to sustainable and smart mobility, thereby contributing to the European Green Deal. The scientific work is clustered in three Work Packages (WP): (1) Improved self-healing concrete, (2) Advanced local (self-) repair, and (3) Durability, service life and sustainability. These are supported by a fourth Work Package (4) Technology transfer and Entrepreneurship, which has as a main goal to ensure market oriented research. In this last work package, commercialization routes and the key success factors to meet exploitation are","PeriodicalId":18309,"journal":{"name":"MATEC Web of Conferences","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lessons learned from the EC MSCA ITN Project SMARTINCS: Smart, Multi-functional, Advanced Repair Technologies In Cementitious Systems\",\"authors\":\"N. De Belie, Tim Van Mullem\",\"doi\":\"10.1051/matecconf/202337801001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extended abstract. To avoid the negative effects of concrete cracking on the durability of our buildings and infrastructure, different approaches to provide concrete with self-healing properties have been designed over the last decades. Self-healing concrete should allow to guarantee the performance of a structure over its service life, preventing costly intensive repair and maintenance operations. By combined experimental research and coupled multiscale models, SMARTINCS moves beyond the state-of-the-art with respect to (1) the efficiency of self-healing concrete, at acceptable cost for real-scale applications; (2) the multi-functionality (corrosion inhibition, self-sensing) of the self-healing solutions; and (3) the technologies for local application of healing agents in high risk zones or in high value grouts and repair products. The developments of SMARTINCS will help society to build and renovate in a resource efficient way and will accelerate the shift to sustainable and smart mobility, thereby contributing to the European Green Deal. The scientific work is clustered in three Work Packages (WP): (1) Improved self-healing concrete, (2) Advanced local (self-) repair, and (3) Durability, service life and sustainability. These are supported by a fourth Work Package (4) Technology transfer and Entrepreneurship, which has as a main goal to ensure market oriented research. In this last work package, commercialization routes and the key success factors to meet exploitation are\",\"PeriodicalId\":18309,\"journal\":{\"name\":\"MATEC Web of Conferences\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MATEC Web of Conferences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/matecconf/202337801001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATEC Web of Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/matecconf/202337801001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lessons learned from the EC MSCA ITN Project SMARTINCS: Smart, Multi-functional, Advanced Repair Technologies In Cementitious Systems
Extended abstract. To avoid the negative effects of concrete cracking on the durability of our buildings and infrastructure, different approaches to provide concrete with self-healing properties have been designed over the last decades. Self-healing concrete should allow to guarantee the performance of a structure over its service life, preventing costly intensive repair and maintenance operations. By combined experimental research and coupled multiscale models, SMARTINCS moves beyond the state-of-the-art with respect to (1) the efficiency of self-healing concrete, at acceptable cost for real-scale applications; (2) the multi-functionality (corrosion inhibition, self-sensing) of the self-healing solutions; and (3) the technologies for local application of healing agents in high risk zones or in high value grouts and repair products. The developments of SMARTINCS will help society to build and renovate in a resource efficient way and will accelerate the shift to sustainable and smart mobility, thereby contributing to the European Green Deal. The scientific work is clustered in three Work Packages (WP): (1) Improved self-healing concrete, (2) Advanced local (self-) repair, and (3) Durability, service life and sustainability. These are supported by a fourth Work Package (4) Technology transfer and Entrepreneurship, which has as a main goal to ensure market oriented research. In this last work package, commercialization routes and the key success factors to meet exploitation are
期刊介绍:
MATEC Web of Conferences is an Open Access publication series dedicated to archiving conference proceedings dealing with all fundamental and applied research aspects related to Materials science, Engineering and Chemistry. All engineering disciplines are covered by the aims and scope of the journal: civil, naval, mechanical, chemical, and electrical engineering as well as nanotechnology and metrology. The journal concerns also all materials in regard to their physical-chemical characterization, implementation, resistance in their environment… Other subdisciples of chemistry, such as analytical chemistry, petrochemistry, organic chemistry…, and even pharmacology, are also welcome. MATEC Web of Conferences offers a wide range of services from the organization of the submission of conference proceedings to the worldwide dissemination of the conference papers. It provides an efficient archiving solution, ensuring maximum exposure and wide indexing of scientific conference proceedings. Proceedings are published under the scientific responsibility of the conference editors.