{"title":"染料化工废水处理工程实例研究","authors":"Xianglin Wu, Yumei Chen, Yanqi Wu","doi":"10.11648/J.AJEP.20190803.12","DOIUrl":null,"url":null,"abstract":"The wastewater treatment engineering design scale of a certain dye group co., LTD in Xuzhou is 3000m 3/d, According to the characteristics of dyestuff wastewater, the combined treatment process of \"physicochemical + biochemical\" was adopted. The engineering operation results show that the removal rate of COD, NH3-N and chroma is 93.1, 80.5 and 90.7 percent, and the effluent water quality is stable and meets the design requirements.","PeriodicalId":7549,"journal":{"name":"American Journal of Environmental Protection","volume":"88 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Case Study of Dyestuff Chemical Wastewater Treatment Project\",\"authors\":\"Xianglin Wu, Yumei Chen, Yanqi Wu\",\"doi\":\"10.11648/J.AJEP.20190803.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The wastewater treatment engineering design scale of a certain dye group co., LTD in Xuzhou is 3000m 3/d, According to the characteristics of dyestuff wastewater, the combined treatment process of \\\"physicochemical + biochemical\\\" was adopted. The engineering operation results show that the removal rate of COD, NH3-N and chroma is 93.1, 80.5 and 90.7 percent, and the effluent water quality is stable and meets the design requirements.\",\"PeriodicalId\":7549,\"journal\":{\"name\":\"American Journal of Environmental Protection\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Environmental Protection\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.AJEP.20190803.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Environmental Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJEP.20190803.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Case Study of Dyestuff Chemical Wastewater Treatment Project
The wastewater treatment engineering design scale of a certain dye group co., LTD in Xuzhou is 3000m 3/d, According to the characteristics of dyestuff wastewater, the combined treatment process of "physicochemical + biochemical" was adopted. The engineering operation results show that the removal rate of COD, NH3-N and chroma is 93.1, 80.5 and 90.7 percent, and the effluent water quality is stable and meets the design requirements.