{"title":"遗传性明胶淀粉样变的神经肌肉病理","authors":"H. Somer, A. Seppäläinen, I. Notkola, M. Haltia","doi":"10.1093/JNEN/61.6.565","DOIUrl":null,"url":null,"abstract":"Hereditary gelsolin amyloidosis (AGel amyloidosis) is a systemic disorder reported worldwide in kindreds with a G654A or G654T gelsolin gene mutation. The clinically characteristic peripheral nerve involvement has been poorly characterized morphologically, and its pathogenesis remains unknown. We studied peripheral nerve and skeletal muscle biopsy or autopsy specimens of 35 patients with a G654A gelsolin gene mutation. Histological, immunohistochemical, and electron microscopic studies showed consistent deposition of gelsolin amyloid (AGel), particularly in the vascular walls and perineurial sheaths. Nerve roots were more severely affected than distal nerves. The amyloid deposits also displayed variable immunoreactivity for apolipoprotein E, amyloid P component, cystatin C, and α-smooth muscle actin. Sural nerve morphometry showed preferential age-related large myelinated nerve fiber loss and reduction of myelin sheath cross-sectional area. There was evidence of denervation atrophy and fiber type grouping in skeletal muscle. Our study shows that marked proximal nerve involvement with AGel angiopathy is an essential feature of AGel amyloidosis. The preferential large fiber loss, not generally seen in amyloid neuropathy, may be caused by ischemia due to AGel angiopathy. Deficient actin modulation by variant gelsolin in neurons and Schwann cells, however, may alter axonal transport and myelination and contribute to AGel polyneuropathy.","PeriodicalId":14858,"journal":{"name":"JNEN: Journal of Neuropathology & Experimental Neurology","volume":"13 1","pages":"565–571"},"PeriodicalIF":0.0000,"publicationDate":"2002-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"Neuromuscular Pathology in Hereditary Gelsolin Amyloidosis\",\"authors\":\"H. Somer, A. Seppäläinen, I. Notkola, M. Haltia\",\"doi\":\"10.1093/JNEN/61.6.565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hereditary gelsolin amyloidosis (AGel amyloidosis) is a systemic disorder reported worldwide in kindreds with a G654A or G654T gelsolin gene mutation. The clinically characteristic peripheral nerve involvement has been poorly characterized morphologically, and its pathogenesis remains unknown. We studied peripheral nerve and skeletal muscle biopsy or autopsy specimens of 35 patients with a G654A gelsolin gene mutation. Histological, immunohistochemical, and electron microscopic studies showed consistent deposition of gelsolin amyloid (AGel), particularly in the vascular walls and perineurial sheaths. Nerve roots were more severely affected than distal nerves. The amyloid deposits also displayed variable immunoreactivity for apolipoprotein E, amyloid P component, cystatin C, and α-smooth muscle actin. Sural nerve morphometry showed preferential age-related large myelinated nerve fiber loss and reduction of myelin sheath cross-sectional area. There was evidence of denervation atrophy and fiber type grouping in skeletal muscle. Our study shows that marked proximal nerve involvement with AGel angiopathy is an essential feature of AGel amyloidosis. The preferential large fiber loss, not generally seen in amyloid neuropathy, may be caused by ischemia due to AGel angiopathy. Deficient actin modulation by variant gelsolin in neurons and Schwann cells, however, may alter axonal transport and myelination and contribute to AGel polyneuropathy.\",\"PeriodicalId\":14858,\"journal\":{\"name\":\"JNEN: Journal of Neuropathology & Experimental Neurology\",\"volume\":\"13 1\",\"pages\":\"565–571\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JNEN: Journal of Neuropathology & Experimental Neurology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/JNEN/61.6.565\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JNEN: Journal of Neuropathology & Experimental Neurology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/JNEN/61.6.565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neuromuscular Pathology in Hereditary Gelsolin Amyloidosis
Hereditary gelsolin amyloidosis (AGel amyloidosis) is a systemic disorder reported worldwide in kindreds with a G654A or G654T gelsolin gene mutation. The clinically characteristic peripheral nerve involvement has been poorly characterized morphologically, and its pathogenesis remains unknown. We studied peripheral nerve and skeletal muscle biopsy or autopsy specimens of 35 patients with a G654A gelsolin gene mutation. Histological, immunohistochemical, and electron microscopic studies showed consistent deposition of gelsolin amyloid (AGel), particularly in the vascular walls and perineurial sheaths. Nerve roots were more severely affected than distal nerves. The amyloid deposits also displayed variable immunoreactivity for apolipoprotein E, amyloid P component, cystatin C, and α-smooth muscle actin. Sural nerve morphometry showed preferential age-related large myelinated nerve fiber loss and reduction of myelin sheath cross-sectional area. There was evidence of denervation atrophy and fiber type grouping in skeletal muscle. Our study shows that marked proximal nerve involvement with AGel angiopathy is an essential feature of AGel amyloidosis. The preferential large fiber loss, not generally seen in amyloid neuropathy, may be caused by ischemia due to AGel angiopathy. Deficient actin modulation by variant gelsolin in neurons and Schwann cells, however, may alter axonal transport and myelination and contribute to AGel polyneuropathy.