数据科学家在软件开发团队中的新角色

Miryung Kim, Thomas Zimmermann, R. Deline, Andrew Begel
{"title":"数据科学家在软件开发团队中的新角色","authors":"Miryung Kim, Thomas Zimmermann, R. Deline, Andrew Begel","doi":"10.1145/2884781.2884783","DOIUrl":null,"url":null,"abstract":"Creating and running software produces large amounts of raw data about the development process and the customer usage, which can be turned into actionable insight with the help of skilled data scientists. Unfortunately, data scientists with the analytical and software engineering skills to analyze these large data sets have been hard to come by; only recently have software companies started to develop competencies in software-oriented data analytics. To understand this emerging role, we interviewed data scientists across several product groups at Microsoft. In this paper, we describe their education and training background, their missions in software engineering contexts, and the type of problems on which they work. We identify five distinct working styles of data scientists: (1) Insight Providers, who work with engineers to collect the data needed to inform decisions that managers make; (2) Modeling Specialists, who use their machine learning expertise to build predictive models; (3) Platform Builders, who create data platforms, balancing both engineering and data analysis concerns; (4) Polymaths, who do all data science activities themselves; and (5) Team Leaders, who run teams of data scientists and spread best practices. We further describe a set of strategies that they employ to increase the impact and actionability of their work.","PeriodicalId":6485,"journal":{"name":"2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE)","volume":"36 1","pages":"96-107"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"191","resultStr":"{\"title\":\"The Emerging Role of Data Scientists on Software Development Teams\",\"authors\":\"Miryung Kim, Thomas Zimmermann, R. Deline, Andrew Begel\",\"doi\":\"10.1145/2884781.2884783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Creating and running software produces large amounts of raw data about the development process and the customer usage, which can be turned into actionable insight with the help of skilled data scientists. Unfortunately, data scientists with the analytical and software engineering skills to analyze these large data sets have been hard to come by; only recently have software companies started to develop competencies in software-oriented data analytics. To understand this emerging role, we interviewed data scientists across several product groups at Microsoft. In this paper, we describe their education and training background, their missions in software engineering contexts, and the type of problems on which they work. We identify five distinct working styles of data scientists: (1) Insight Providers, who work with engineers to collect the data needed to inform decisions that managers make; (2) Modeling Specialists, who use their machine learning expertise to build predictive models; (3) Platform Builders, who create data platforms, balancing both engineering and data analysis concerns; (4) Polymaths, who do all data science activities themselves; and (5) Team Leaders, who run teams of data scientists and spread best practices. We further describe a set of strategies that they employ to increase the impact and actionability of their work.\",\"PeriodicalId\":6485,\"journal\":{\"name\":\"2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE)\",\"volume\":\"36 1\",\"pages\":\"96-107\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"191\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2884781.2884783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2884781.2884783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 191

摘要

创建和运行软件会产生大量关于开发过程和客户使用情况的原始数据,这些数据可以在熟练的数据科学家的帮助下转化为可操作的见解。不幸的是,拥有分析和软件工程技能来分析这些大型数据集的数据科学家很难找到;直到最近,软件公司才开始开发面向软件的数据分析能力。为了了解这一新兴角色,我们采访了微软几个产品团队的数据科学家。在本文中,我们描述了他们的教育和培训背景,他们在软件工程环境中的任务,以及他们所处理的问题类型。我们确定了数据科学家的五种不同的工作风格:(1)洞察提供者,他们与工程师一起收集所需的数据,为管理者做出决策提供信息;(2)建模专家,利用他们的机器学习专业知识建立预测模型;(3)平台构建者,创建数据平台,平衡工程和数据分析问题;(4)通才,所有数据科学活动都由自己完成;(5)团队领导者,负责管理数据科学家团队并传播最佳实践。我们进一步描述了一套他们用来增加其工作的影响力和可操作性的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Emerging Role of Data Scientists on Software Development Teams
Creating and running software produces large amounts of raw data about the development process and the customer usage, which can be turned into actionable insight with the help of skilled data scientists. Unfortunately, data scientists with the analytical and software engineering skills to analyze these large data sets have been hard to come by; only recently have software companies started to develop competencies in software-oriented data analytics. To understand this emerging role, we interviewed data scientists across several product groups at Microsoft. In this paper, we describe their education and training background, their missions in software engineering contexts, and the type of problems on which they work. We identify five distinct working styles of data scientists: (1) Insight Providers, who work with engineers to collect the data needed to inform decisions that managers make; (2) Modeling Specialists, who use their machine learning expertise to build predictive models; (3) Platform Builders, who create data platforms, balancing both engineering and data analysis concerns; (4) Polymaths, who do all data science activities themselves; and (5) Team Leaders, who run teams of data scientists and spread best practices. We further describe a set of strategies that they employ to increase the impact and actionability of their work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Thread Sharing Analysis Overcoming Open Source Project Entry Barriers with a Portal for Newcomers Nomen est Omen: Exploring and Exploiting Similarities between Argument and Parameter Names Reliability of Run-Time Quality-of-Service Evaluation Using Parametric Model Checking On the Techniques We Create, the Tools We Build, and Their Misalignments: A Study of KLEE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1