基于人工智能的交通流分析与分类

I. Balabanova, S. Kostadinova, V. Markova, G. Georgiev
{"title":"基于人工智能的交通流分析与分类","authors":"I. Balabanova, S. Kostadinova, V. Markova, G. Georgiev","doi":"10.1109/BIA48344.2019.8967475","DOIUrl":null,"url":null,"abstract":"This report presents an evaluation of artificial neural networks in terms of computational efficiency, by analyzing transmitted information flows for determination the type of defined traffic categories using artificial intelligence. The subject of study are Markov M/M/c circuits with unlimited number of waiting calls in the queue and fixed number of server stations in accordance with the desired test categories, as follows c=5, c=10 and c=15. Three layer architectures are applied to different types of neural output activators with Levenberg-Marquardt training, respectively linear, tangent-sigmoidal and logarithmic-sigmoidal. The lowest values of the Mean Squared Error (MSE) of 0.0080, 0.0041, and 0.1923 are experimentally established at 7, 3, and 25 hidden neurons for the indicated activation functions. An accuracy levels of 94.4%, 100.0%, and 70.6% were obtained against indicator levels for identical numbers of neurons.","PeriodicalId":6688,"journal":{"name":"2019 International Conference on Biomedical Innovations and Applications (BIA)","volume":"171 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Analysis and Categorization of Traffic Streams by Artificial Intelligence\",\"authors\":\"I. Balabanova, S. Kostadinova, V. Markova, G. Georgiev\",\"doi\":\"10.1109/BIA48344.2019.8967475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This report presents an evaluation of artificial neural networks in terms of computational efficiency, by analyzing transmitted information flows for determination the type of defined traffic categories using artificial intelligence. The subject of study are Markov M/M/c circuits with unlimited number of waiting calls in the queue and fixed number of server stations in accordance with the desired test categories, as follows c=5, c=10 and c=15. Three layer architectures are applied to different types of neural output activators with Levenberg-Marquardt training, respectively linear, tangent-sigmoidal and logarithmic-sigmoidal. The lowest values of the Mean Squared Error (MSE) of 0.0080, 0.0041, and 0.1923 are experimentally established at 7, 3, and 25 hidden neurons for the indicated activation functions. An accuracy levels of 94.4%, 100.0%, and 70.6% were obtained against indicator levels for identical numbers of neurons.\",\"PeriodicalId\":6688,\"journal\":{\"name\":\"2019 International Conference on Biomedical Innovations and Applications (BIA)\",\"volume\":\"171 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Biomedical Innovations and Applications (BIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIA48344.2019.8967475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Biomedical Innovations and Applications (BIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIA48344.2019.8967475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本报告通过分析传输的信息流来确定使用人工智能定义的流量类别的类型,从计算效率方面对人工神经网络进行了评估。本文研究的对象是Markov M/M/c电路,队列中等待呼叫数不限,服务站数固定,按照期望的测试类别,c=5, c=10, c=15。通过Levenberg-Marquardt训练,将三层结构应用于不同类型的神经输出激活器,分别为线性、切线-s型和对数-s型。分别在7、3和25个隐藏神经元上建立了最小的均方误差(MSE),分别为0.0080、0.0041和0.1923。对于相同数量的神经元,准确度分别为94.4%、100.0%和70.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis and Categorization of Traffic Streams by Artificial Intelligence
This report presents an evaluation of artificial neural networks in terms of computational efficiency, by analyzing transmitted information flows for determination the type of defined traffic categories using artificial intelligence. The subject of study are Markov M/M/c circuits with unlimited number of waiting calls in the queue and fixed number of server stations in accordance with the desired test categories, as follows c=5, c=10 and c=15. Three layer architectures are applied to different types of neural output activators with Levenberg-Marquardt training, respectively linear, tangent-sigmoidal and logarithmic-sigmoidal. The lowest values of the Mean Squared Error (MSE) of 0.0080, 0.0041, and 0.1923 are experimentally established at 7, 3, and 25 hidden neurons for the indicated activation functions. An accuracy levels of 94.4%, 100.0%, and 70.6% were obtained against indicator levels for identical numbers of neurons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CLAS: A Database for Cognitive Load, Affect and Stress Recognition Fucntional Modification of Upper Limb Prosthesis for Below Elbow Congential Deficiencies Application of Smart Contracts based on Ethereum Blockchain for the Purpose of Insurance Services Coping with missing data in an unobtrusive monitoring system for office workers An Approach to Improve Reliability of Vital Signs Monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1