{"title":"语音情感识别的密集网络方法研究","authors":"Mohammed Abdel-Wahab, C. Busso","doi":"10.1109/ICASSP.2018.8461866","DOIUrl":null,"url":null,"abstract":"Deep neural networks have been proven to be very effective in various classification problems and show great promise for emotion recognition from speech. Studies have proposed various architectures that further improve the performance of emotion recognition systems. However, there are still various open questions regarding the best approach to building a speech emotion recognition system. Would the system's performance improve if we have more labeled data? How much do we benefit from data augmentation? What activation and regularization schemes are more beneficial? How does the depth of the network affect the performance? We are collecting the MSP-Podcast corpus, a large dataset with over 30 hours of data, which provides an ideal resource to address these questions. This study explores various dense architectures to predict arousal, valence and dominance scores. We investigate varying the training set size, width, and depth of the network, as well as the activation functions used during training. We also study the effect of data augmentation on the network's performance. We find that bigger training set improves the performance. Batch normalization is crucial to achieving a good performance for deeper networks. We do not observe significant differences in the performance in residual networks compared to dense networks.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"59 1","pages":"5084-5088"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Study of Dense Network Approaches for Speech Emotion Recognition\",\"authors\":\"Mohammed Abdel-Wahab, C. Busso\",\"doi\":\"10.1109/ICASSP.2018.8461866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural networks have been proven to be very effective in various classification problems and show great promise for emotion recognition from speech. Studies have proposed various architectures that further improve the performance of emotion recognition systems. However, there are still various open questions regarding the best approach to building a speech emotion recognition system. Would the system's performance improve if we have more labeled data? How much do we benefit from data augmentation? What activation and regularization schemes are more beneficial? How does the depth of the network affect the performance? We are collecting the MSP-Podcast corpus, a large dataset with over 30 hours of data, which provides an ideal resource to address these questions. This study explores various dense architectures to predict arousal, valence and dominance scores. We investigate varying the training set size, width, and depth of the network, as well as the activation functions used during training. We also study the effect of data augmentation on the network's performance. We find that bigger training set improves the performance. Batch normalization is crucial to achieving a good performance for deeper networks. We do not observe significant differences in the performance in residual networks compared to dense networks.\",\"PeriodicalId\":6638,\"journal\":{\"name\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"59 1\",\"pages\":\"5084-5088\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2018.8461866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8461866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study of Dense Network Approaches for Speech Emotion Recognition
Deep neural networks have been proven to be very effective in various classification problems and show great promise for emotion recognition from speech. Studies have proposed various architectures that further improve the performance of emotion recognition systems. However, there are still various open questions regarding the best approach to building a speech emotion recognition system. Would the system's performance improve if we have more labeled data? How much do we benefit from data augmentation? What activation and regularization schemes are more beneficial? How does the depth of the network affect the performance? We are collecting the MSP-Podcast corpus, a large dataset with over 30 hours of data, which provides an ideal resource to address these questions. This study explores various dense architectures to predict arousal, valence and dominance scores. We investigate varying the training set size, width, and depth of the network, as well as the activation functions used during training. We also study the effect of data augmentation on the network's performance. We find that bigger training set improves the performance. Batch normalization is crucial to achieving a good performance for deeper networks. We do not observe significant differences in the performance in residual networks compared to dense networks.