应力历史和浅埋对离心锥入砂试验的影响

A. Roy, S. Chow, C. O’Loughlin, M. Randolph
{"title":"应力历史和浅埋对离心锥入砂试验的影响","authors":"A. Roy, S. Chow, C. O’Loughlin, M. Randolph","doi":"10.1115/OMAE2019-95393","DOIUrl":null,"url":null,"abstract":"\n The paper investigates the effect of stress history and shallow embedment on centrifuge cone penetration tests in sand. A series of centrifuge cone penetration tests were performed in loose and dense silica sand at g-levels ranging between 20 and 100 with corresponding overconsolidation ratio (OCR) between 1 and 5. Based on the measured cone tip resistance (qc) profiles, improved empirical correlations have been proposed with depth factors (fD) to impart additional flexibility in accurately back predicting sand relative density (RD) at shallow embedment in normally consolidated (NC) sands. The qc - RD correlations are then extended to capture overconsolidation effects in cone tip resistance, which is broadly consistent with the changes in compressibility and in-situ lateral stresses taking place in sands with increasing OCR levels. The proposed expressions allow accurate quantification of depth corrected CPT profiles in soils of varying overconsolidation ratio, for application in the interpretation of model tests on shallow foundations and anchors and in shallowly buried structures such as pipelines. The expressions also have application for interpretation of field CPT profiles where the thickness of interbedded layers is of similar order of magnitude to the cone diameter.","PeriodicalId":23567,"journal":{"name":"Volume 1: Offshore Technology; Offshore Geotechnics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Effect of Stress History and Shallow Embedment on Centrifuge Cone Penetration Tests in Sand\",\"authors\":\"A. Roy, S. Chow, C. O’Loughlin, M. Randolph\",\"doi\":\"10.1115/OMAE2019-95393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The paper investigates the effect of stress history and shallow embedment on centrifuge cone penetration tests in sand. A series of centrifuge cone penetration tests were performed in loose and dense silica sand at g-levels ranging between 20 and 100 with corresponding overconsolidation ratio (OCR) between 1 and 5. Based on the measured cone tip resistance (qc) profiles, improved empirical correlations have been proposed with depth factors (fD) to impart additional flexibility in accurately back predicting sand relative density (RD) at shallow embedment in normally consolidated (NC) sands. The qc - RD correlations are then extended to capture overconsolidation effects in cone tip resistance, which is broadly consistent with the changes in compressibility and in-situ lateral stresses taking place in sands with increasing OCR levels. The proposed expressions allow accurate quantification of depth corrected CPT profiles in soils of varying overconsolidation ratio, for application in the interpretation of model tests on shallow foundations and anchors and in shallowly buried structures such as pipelines. The expressions also have application for interpretation of field CPT profiles where the thickness of interbedded layers is of similar order of magnitude to the cone diameter.\",\"PeriodicalId\":23567,\"journal\":{\"name\":\"Volume 1: Offshore Technology; Offshore Geotechnics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Offshore Technology; Offshore Geotechnics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/OMAE2019-95393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Offshore Technology; Offshore Geotechnics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/OMAE2019-95393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

研究了应力历史和浅埋对离心锥入砂试验的影响。在g值为20 ~ 100、超固结比(OCR)为1 ~ 5的条件下,对松散硅砂和致密硅砂进行了一系列离心锥突穿透试验。基于测量的锥尖阻力(qc)曲线,提出了改进深度因子(fD)的经验相关性,为准确预测正常固结砂(NC)浅埋处的砂相对密度(RD)提供了额外的灵活性。然后将qc - RD相关性扩展到锥尖阻力的超固结效应,这与随着OCR水平的增加砂体中压缩性和原位侧向应力的变化大致一致。所提出的表达式允许在不同超固结比的土壤中精确量化深度校正后的CPT剖面,用于解释浅基础和锚以及浅埋结构(如管道)的模型试验。这些表达式也适用于解释相互层厚度与锥直径相似数量级的现场CPT剖面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Stress History and Shallow Embedment on Centrifuge Cone Penetration Tests in Sand
The paper investigates the effect of stress history and shallow embedment on centrifuge cone penetration tests in sand. A series of centrifuge cone penetration tests were performed in loose and dense silica sand at g-levels ranging between 20 and 100 with corresponding overconsolidation ratio (OCR) between 1 and 5. Based on the measured cone tip resistance (qc) profiles, improved empirical correlations have been proposed with depth factors (fD) to impart additional flexibility in accurately back predicting sand relative density (RD) at shallow embedment in normally consolidated (NC) sands. The qc - RD correlations are then extended to capture overconsolidation effects in cone tip resistance, which is broadly consistent with the changes in compressibility and in-situ lateral stresses taking place in sands with increasing OCR levels. The proposed expressions allow accurate quantification of depth corrected CPT profiles in soils of varying overconsolidation ratio, for application in the interpretation of model tests on shallow foundations and anchors and in shallowly buried structures such as pipelines. The expressions also have application for interpretation of field CPT profiles where the thickness of interbedded layers is of similar order of magnitude to the cone diameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of Different Pile Installation Methods on Dense Sand Estimating Second Order Wave Drift Forces and Moments for Calculating DP Capability Plots A Conjoint Analysis of the Stability and Time-Domain Analysis on Floating Platform During Mooring Line Breaking Wave Propagation in CFD-Based Numerical Wave Tank CFD Analysis on Hydrodynamic Characteristics for Optimizing Torpedo Anchors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1