Benjamin Delaware, Steven Keuchel, T. Schrijvers, B. C. D. S. Oliveira
{"title":"模一元元理论","authors":"Benjamin Delaware, Steven Keuchel, T. Schrijvers, B. C. D. S. Oliveira","doi":"10.1145/2500365.2500587","DOIUrl":null,"url":null,"abstract":"This paper presents 3MT, a framework for modular mechanized meta-theory of languages with effects. Using 3MT, individual language features and their corresponding definitions -- semantic functions, theorem statements and proofs-- can be built separately and then reused to create different languages with fully mechanized meta-theory. 3MT combines modular datatypes and monads to define denotational semantics with effects on a per-feature basis, without fixing the particular set of effects or language constructs. One well-established problem with type soundness proofs for denotational semantics is that they are notoriously brittle with respect to the addition of new effects. The statement of type soundness for a language depends intimately on the effects it uses, making it particularly challenging to achieve modularity. 3MT solves this long-standing problem by splitting these theorems into two separate and reusable parts: a feature theorem that captures the well-typing of denotations produced by the semantic function of an individual feature with respect to only the effects used, and an effect theorem that adapts well-typings of denotations to a fixed superset of effects. The proof of type soundness for a particular language simply combines these theorems for its features and the combination of their effects. To establish both theorems, 3MT uses two key reasoning techniques: modular induction and algebraic laws about effects. Several effectful language features, including references and errors, illustrate the capabilities of 3MT. A case study reuses these features to build fully mechanized definitions and proofs for 28 languages, including several versions of mini-ML with effects.","PeriodicalId":20504,"journal":{"name":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Modular monadic meta-theory\",\"authors\":\"Benjamin Delaware, Steven Keuchel, T. Schrijvers, B. C. D. S. Oliveira\",\"doi\":\"10.1145/2500365.2500587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents 3MT, a framework for modular mechanized meta-theory of languages with effects. Using 3MT, individual language features and their corresponding definitions -- semantic functions, theorem statements and proofs-- can be built separately and then reused to create different languages with fully mechanized meta-theory. 3MT combines modular datatypes and monads to define denotational semantics with effects on a per-feature basis, without fixing the particular set of effects or language constructs. One well-established problem with type soundness proofs for denotational semantics is that they are notoriously brittle with respect to the addition of new effects. The statement of type soundness for a language depends intimately on the effects it uses, making it particularly challenging to achieve modularity. 3MT solves this long-standing problem by splitting these theorems into two separate and reusable parts: a feature theorem that captures the well-typing of denotations produced by the semantic function of an individual feature with respect to only the effects used, and an effect theorem that adapts well-typings of denotations to a fixed superset of effects. The proof of type soundness for a particular language simply combines these theorems for its features and the combination of their effects. To establish both theorems, 3MT uses two key reasoning techniques: modular induction and algebraic laws about effects. Several effectful language features, including references and errors, illustrate the capabilities of 3MT. A case study reuses these features to build fully mechanized definitions and proofs for 28 languages, including several versions of mini-ML with effects.\",\"PeriodicalId\":20504,\"journal\":{\"name\":\"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2500365.2500587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2500365.2500587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents 3MT, a framework for modular mechanized meta-theory of languages with effects. Using 3MT, individual language features and their corresponding definitions -- semantic functions, theorem statements and proofs-- can be built separately and then reused to create different languages with fully mechanized meta-theory. 3MT combines modular datatypes and monads to define denotational semantics with effects on a per-feature basis, without fixing the particular set of effects or language constructs. One well-established problem with type soundness proofs for denotational semantics is that they are notoriously brittle with respect to the addition of new effects. The statement of type soundness for a language depends intimately on the effects it uses, making it particularly challenging to achieve modularity. 3MT solves this long-standing problem by splitting these theorems into two separate and reusable parts: a feature theorem that captures the well-typing of denotations produced by the semantic function of an individual feature with respect to only the effects used, and an effect theorem that adapts well-typings of denotations to a fixed superset of effects. The proof of type soundness for a particular language simply combines these theorems for its features and the combination of their effects. To establish both theorems, 3MT uses two key reasoning techniques: modular induction and algebraic laws about effects. Several effectful language features, including references and errors, illustrate the capabilities of 3MT. A case study reuses these features to build fully mechanized definitions and proofs for 28 languages, including several versions of mini-ML with effects.