超分辨率:采用定量比较的稀疏字典设计方法

Marwa Moustafa, H. M. Ebeid, A. Helmy, Taymoor M. Nazamy, M. Tolba
{"title":"超分辨率:采用定量比较的稀疏字典设计方法","authors":"Marwa Moustafa, H. M. Ebeid, A. Helmy, Taymoor M. Nazamy, M. Tolba","doi":"10.1109/INTELCIS.2015.7397249","DOIUrl":null,"url":null,"abstract":"Single image super resolution (SISR) is the process that obtains a high resolution image from a single low resolution (LR) image by increasing the high frequency information and removing the degradation of the noise. Sparse representation of signal assumes linear combinations of a few atoms from a pre -specified dictionary. Sparse representation has been used successfully as a prior in signal reconstruction. Dictionary design is crucial for the success of reconstruction high resolution images. This paper evaluates the performance of dictionary design models in both mathematical and learning based models, it also compares the wavelet method, Haar method, DCT method, MOD method and K-SVD method. Various experiments are conducted using a real SPOT-4 satellite image. Experimental results demonstrate that the learning based approaches are very effective in increasing resolution and compare favorably to mathematical based approaches.","PeriodicalId":6478,"journal":{"name":"2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS)","volume":"100 1","pages":"383-389"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Super-resolution: Sparse dictionary design method using quantitative comparison\",\"authors\":\"Marwa Moustafa, H. M. Ebeid, A. Helmy, Taymoor M. Nazamy, M. Tolba\",\"doi\":\"10.1109/INTELCIS.2015.7397249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single image super resolution (SISR) is the process that obtains a high resolution image from a single low resolution (LR) image by increasing the high frequency information and removing the degradation of the noise. Sparse representation of signal assumes linear combinations of a few atoms from a pre -specified dictionary. Sparse representation has been used successfully as a prior in signal reconstruction. Dictionary design is crucial for the success of reconstruction high resolution images. This paper evaluates the performance of dictionary design models in both mathematical and learning based models, it also compares the wavelet method, Haar method, DCT method, MOD method and K-SVD method. Various experiments are conducted using a real SPOT-4 satellite image. Experimental results demonstrate that the learning based approaches are very effective in increasing resolution and compare favorably to mathematical based approaches.\",\"PeriodicalId\":6478,\"journal\":{\"name\":\"2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS)\",\"volume\":\"100 1\",\"pages\":\"383-389\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTELCIS.2015.7397249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTELCIS.2015.7397249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

单幅图像超分辨率(SISR)是通过增加高频信息和消除噪声的退化,从单幅低分辨率图像中获得高分辨率图像的过程。信号的稀疏表示假定来自预先指定的字典的几个原子的线性组合。稀疏表示已被成功地用作信号重构的先验算法。字典设计对于高分辨率图像的成功重建至关重要。本文对基于数学和基于学习的词典设计模型的性能进行了评价,并对小波方法、Haar方法、DCT方法、MOD方法和K-SVD方法进行了比较。利用真实的SPOT-4卫星图像进行了各种实验。实验结果表明,基于学习的方法在提高分辨率方面非常有效,并且优于基于数学的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Super-resolution: Sparse dictionary design method using quantitative comparison
Single image super resolution (SISR) is the process that obtains a high resolution image from a single low resolution (LR) image by increasing the high frequency information and removing the degradation of the noise. Sparse representation of signal assumes linear combinations of a few atoms from a pre -specified dictionary. Sparse representation has been used successfully as a prior in signal reconstruction. Dictionary design is crucial for the success of reconstruction high resolution images. This paper evaluates the performance of dictionary design models in both mathematical and learning based models, it also compares the wavelet method, Haar method, DCT method, MOD method and K-SVD method. Various experiments are conducted using a real SPOT-4 satellite image. Experimental results demonstrate that the learning based approaches are very effective in increasing resolution and compare favorably to mathematical based approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the use of probabilistic model-checking for the verification of prognostics applications Prospective, knowledge based clinical risk analysis: The OPT-model Partial deduction in predicate calculus as a tool for artificial intelligence problem complexity decreasing XML summarization: A survey Finding the pin in the haystack: A Bot Traceback service for public clouds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1