J. C. Merlano-Duncan, J. Querol, Adriano Camps, S. Chatzinotas, B. Ottersten
{"title":"相干分布式遥感系统的体系结构与同步技术","authors":"J. C. Merlano-Duncan, J. Querol, Adriano Camps, S. Chatzinotas, B. Ottersten","doi":"10.1109/IGARSS.2019.8898444","DOIUrl":null,"url":null,"abstract":"Phase, frequency and time synchronization is a crucial requirement for many applications as such as multi-static remote sensing and distributed beamforming for communications. The literature on the field is very wide, and in some cases, the requirements of the proposed synchronization solution may surpass the ones set by the application itself. Moreover, the synchronization solution becomes even more challenging when the nodes are flying or hovering on aerial or space platforms. In this work, we compare and classify the synchronization technologies available in the literature according to a common proposed framework, and we discuss the considerations of an implementation for distributed remote sensing applications. The general framework considered is based on a distributed collection of autonomous nodes that try to synchronize their clocks with a common reference. Moreover, they can be classified in non-overlapping, adjacent and overlapping frequency band scenarios.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"3 1","pages":"8875-8878"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Architectures and Synchronization Techniques for Coherent Distributed Remote Sensing Systems\",\"authors\":\"J. C. Merlano-Duncan, J. Querol, Adriano Camps, S. Chatzinotas, B. Ottersten\",\"doi\":\"10.1109/IGARSS.2019.8898444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phase, frequency and time synchronization is a crucial requirement for many applications as such as multi-static remote sensing and distributed beamforming for communications. The literature on the field is very wide, and in some cases, the requirements of the proposed synchronization solution may surpass the ones set by the application itself. Moreover, the synchronization solution becomes even more challenging when the nodes are flying or hovering on aerial or space platforms. In this work, we compare and classify the synchronization technologies available in the literature according to a common proposed framework, and we discuss the considerations of an implementation for distributed remote sensing applications. The general framework considered is based on a distributed collection of autonomous nodes that try to synchronize their clocks with a common reference. Moreover, they can be classified in non-overlapping, adjacent and overlapping frequency band scenarios.\",\"PeriodicalId\":13262,\"journal\":{\"name\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"3 1\",\"pages\":\"8875-8878\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2019.8898444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8898444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Architectures and Synchronization Techniques for Coherent Distributed Remote Sensing Systems
Phase, frequency and time synchronization is a crucial requirement for many applications as such as multi-static remote sensing and distributed beamforming for communications. The literature on the field is very wide, and in some cases, the requirements of the proposed synchronization solution may surpass the ones set by the application itself. Moreover, the synchronization solution becomes even more challenging when the nodes are flying or hovering on aerial or space platforms. In this work, we compare and classify the synchronization technologies available in the literature according to a common proposed framework, and we discuss the considerations of an implementation for distributed remote sensing applications. The general framework considered is based on a distributed collection of autonomous nodes that try to synchronize their clocks with a common reference. Moreover, they can be classified in non-overlapping, adjacent and overlapping frequency band scenarios.