墨西哥湾古近系深水浊积岩油田混采与序采方案的敏感性比较

IF 1.9 4区 工程技术 Q4 ENERGY & FUELS Energy Exploration & Exploitation Pub Date : 2023-09-07 DOI:10.1177/01445987231195679
Elnara Rustamzade, Wen Pan, John T. Foster, Michael Pyrcz
{"title":"墨西哥湾古近系深水浊积岩油田混采与序采方案的敏感性比较","authors":"Elnara Rustamzade, Wen Pan, John T. Foster, Michael Pyrcz","doi":"10.1177/01445987231195679","DOIUrl":null,"url":null,"abstract":"A commingled production scheme, where wells are simultaneously completed in multiple reservoir units, offers a cost-effective alternative worldwide. However, their behavior can be more complex than single-unit wells in sequential production. Limited completion studies exist for the unique Paleogene Gulf of Mexico fields. To aid decision-making, we conducted a numerical study using geological and reservoir models of Lower and Upper Wilcox units, based on publicly available data. Results show that commingled production maximizes per-well oil production compared to sequential schemes. Over 30 years, it provides 61% more oil recovery, and over 50 years, it yields 21% more. One-factor-at-a-time design of experiments sensitivity analysis identifies that key reservoir properties influencing oil recovery in both schemes are upper and lower unit thicknesses, facies proportion of the upper unit. Additionally, average permeability of the lower unit plays a significant role in sequential production schemes.","PeriodicalId":11606,"journal":{"name":"Energy Exploration & Exploitation","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of commingled and sequential production schemes by sensitivity analysis for Gulf of Mexico Paleogene Deepwater turbidite oil fields: A simulation study\",\"authors\":\"Elnara Rustamzade, Wen Pan, John T. Foster, Michael Pyrcz\",\"doi\":\"10.1177/01445987231195679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A commingled production scheme, where wells are simultaneously completed in multiple reservoir units, offers a cost-effective alternative worldwide. However, their behavior can be more complex than single-unit wells in sequential production. Limited completion studies exist for the unique Paleogene Gulf of Mexico fields. To aid decision-making, we conducted a numerical study using geological and reservoir models of Lower and Upper Wilcox units, based on publicly available data. Results show that commingled production maximizes per-well oil production compared to sequential schemes. Over 30 years, it provides 61% more oil recovery, and over 50 years, it yields 21% more. One-factor-at-a-time design of experiments sensitivity analysis identifies that key reservoir properties influencing oil recovery in both schemes are upper and lower unit thicknesses, facies proportion of the upper unit. Additionally, average permeability of the lower unit plays a significant role in sequential production schemes.\",\"PeriodicalId\":11606,\"journal\":{\"name\":\"Energy Exploration & Exploitation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Exploration & Exploitation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/01445987231195679\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Exploration & Exploitation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/01445987231195679","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

在多个油藏单元中同时完井的混合生产方案,在全球范围内提供了一种经济有效的替代方案。然而,在连续生产中,它们的行为可能比单井更复杂。针对墨西哥湾独特的古近系油田的完井研究有限。为了帮助决策,我们根据公开数据,使用Lower和Upper Wilcox单元的地质和储层模型进行了数值研究。结果表明,与顺序采油方案相比,混合采油方案的单井产油量最大。在30年的时间里,它的石油采收率提高了61%,在50年的时间里,它的产量提高了21%。单因素一次实验灵敏度分析设计表明,影响两种方案采收率的关键储层物性是上、下单元厚度、上单元相比例。此外,下部单元的平均渗透率在后续生产方案中起着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of commingled and sequential production schemes by sensitivity analysis for Gulf of Mexico Paleogene Deepwater turbidite oil fields: A simulation study
A commingled production scheme, where wells are simultaneously completed in multiple reservoir units, offers a cost-effective alternative worldwide. However, their behavior can be more complex than single-unit wells in sequential production. Limited completion studies exist for the unique Paleogene Gulf of Mexico fields. To aid decision-making, we conducted a numerical study using geological and reservoir models of Lower and Upper Wilcox units, based on publicly available data. Results show that commingled production maximizes per-well oil production compared to sequential schemes. Over 30 years, it provides 61% more oil recovery, and over 50 years, it yields 21% more. One-factor-at-a-time design of experiments sensitivity analysis identifies that key reservoir properties influencing oil recovery in both schemes are upper and lower unit thicknesses, facies proportion of the upper unit. Additionally, average permeability of the lower unit plays a significant role in sequential production schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Exploration & Exploitation
Energy Exploration & Exploitation 工程技术-能源与燃料
CiteScore
5.40
自引率
3.70%
发文量
78
审稿时长
3.9 months
期刊介绍: Energy Exploration & Exploitation is a peer-reviewed, open access journal that provides up-to-date, informative reviews and original articles on important issues in the exploration, exploitation, use and economics of the world’s energy resources.
期刊最新文献
Sustainable energy recovery from municipal solid wastes: An in-depth analysis of waste-to-energy technologies and their environmental implications in India Discussion on the production mechanism of deep coalbed methane in the eastern margin of the Ordos Basin Assessing the diffusion of photovoltaic technology and electric vehicles using system dynamics modeling Trihybrid nanofluid flow through nozzle of a rocket engine: Numerical solution and irreversibility analysis An advanced hybrid deep learning model for accurate energy load prediction in smart building
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1