基于直方图统计的神经网络目标检测算法

Shuai Jiang, Yalong Pang, Lu-yuan Wang, Ji-yang Yu, Bowen Cheng, Zongling Li
{"title":"基于直方图统计的神经网络目标检测算法","authors":"Shuai Jiang, Yalong Pang, Lu-yuan Wang, Ji-yang Yu, Bowen Cheng, Zongling Li","doi":"10.1109/IGARSS39084.2020.9323126","DOIUrl":null,"url":null,"abstract":"Aiming at the problems of poor adaptability of traditional target detection algorithms and high computational resources of deep learning algorithms, a BP neural network target detection algorithm based on histogram statistics is proposed. It is based on the principle that similar areas have similar histograms. In this algorithm, the two-dimensional image information converts to the one-dimensional histogram information. We establish a three-layer neural network model, and the histogram is used as the input of the BP neural network. Compared to the traditional target detection algorithms, its complexity is low, and its efficiency and accuracy is high. The experimental results show that the fewer classification categories, the higher target detection probability. The computational complexity of the BP neural network is low, so the computational efficiency is quite high. The accuracy of target recognition is higher than 97% with SAR and optical images.","PeriodicalId":6466,"journal":{"name":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"22 1","pages":"1628-1631"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Target Detection Algorithm of Neural Network Based on Histogram Statistics\",\"authors\":\"Shuai Jiang, Yalong Pang, Lu-yuan Wang, Ji-yang Yu, Bowen Cheng, Zongling Li\",\"doi\":\"10.1109/IGARSS39084.2020.9323126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the problems of poor adaptability of traditional target detection algorithms and high computational resources of deep learning algorithms, a BP neural network target detection algorithm based on histogram statistics is proposed. It is based on the principle that similar areas have similar histograms. In this algorithm, the two-dimensional image information converts to the one-dimensional histogram information. We establish a three-layer neural network model, and the histogram is used as the input of the BP neural network. Compared to the traditional target detection algorithms, its complexity is low, and its efficiency and accuracy is high. The experimental results show that the fewer classification categories, the higher target detection probability. The computational complexity of the BP neural network is low, so the computational efficiency is quite high. The accuracy of target recognition is higher than 97% with SAR and optical images.\",\"PeriodicalId\":6466,\"journal\":{\"name\":\"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"volume\":\"22 1\",\"pages\":\"1628-1631\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS39084.2020.9323126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS39084.2020.9323126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对传统目标检测算法适应性差和深度学习算法计算资源大的问题,提出了一种基于直方图统计的BP神经网络目标检测算法。它基于相似区域具有相似直方图的原理。该算法将二维图像信息转换为一维直方图信息。我们建立了一个三层神经网络模型,并将直方图作为BP神经网络的输入。与传统的目标检测算法相比,其复杂度低,效率和精度高。实验结果表明,分类类别越少,目标检测概率越高。BP神经网络的计算复杂度较低,因此计算效率相当高。SAR和光学图像的目标识别准确率均高于97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Target Detection Algorithm of Neural Network Based on Histogram Statistics
Aiming at the problems of poor adaptability of traditional target detection algorithms and high computational resources of deep learning algorithms, a BP neural network target detection algorithm based on histogram statistics is proposed. It is based on the principle that similar areas have similar histograms. In this algorithm, the two-dimensional image information converts to the one-dimensional histogram information. We establish a three-layer neural network model, and the histogram is used as the input of the BP neural network. Compared to the traditional target detection algorithms, its complexity is low, and its efficiency and accuracy is high. The experimental results show that the fewer classification categories, the higher target detection probability. The computational complexity of the BP neural network is low, so the computational efficiency is quite high. The accuracy of target recognition is higher than 97% with SAR and optical images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ongoing Progress Toward NASA's Surface Biology and Geology Mission Sea Surface Salinity Dynamics in the Bohai Sea Using MODIS Data Water Surface Level Monitoring of the Axios River Wetlands, Greece, Using Airborne and Space-Borne Earth Observation Data Selection of the 3-D Shearlet Cubes for Improving Hyperspectral Image Joint Sparse Classification A New Method for Determining Rain Flag of the Sentinel-3 Altimeter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1