在CPU限制下近似StreamingWindow连接

A. Ayad, J. Naughton, Stephen J. Wright, U. Srivastava
{"title":"在CPU限制下近似StreamingWindow连接","authors":"A. Ayad, J. Naughton, Stephen J. Wright, U. Srivastava","doi":"10.1109/ICDE.2006.24","DOIUrl":null,"url":null,"abstract":"Data streaming systems face the possibility of having to shed load in the case of CPU or memory resource limitations. We study the CPU limited scenario in detail. First, we propose a new model for the CPU cost. Then we formally state the problem of shedding load for the goal of obtaining the maximum possible subset of the complete answer, and propose an online strategy for semantic load shedding. Moving on to random load shedding, we discuss random load shedding strategies that decouple the window maintenance and tuple production operations of the symmetric hash join, and prove that one of them — Probe-No-Insert — always dominates the previously proposed coin flipping strategy.","PeriodicalId":6819,"journal":{"name":"22nd International Conference on Data Engineering (ICDE'06)","volume":"1 1","pages":"142-142"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Approximating StreamingWindow Joins Under CPU Limitations\",\"authors\":\"A. Ayad, J. Naughton, Stephen J. Wright, U. Srivastava\",\"doi\":\"10.1109/ICDE.2006.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data streaming systems face the possibility of having to shed load in the case of CPU or memory resource limitations. We study the CPU limited scenario in detail. First, we propose a new model for the CPU cost. Then we formally state the problem of shedding load for the goal of obtaining the maximum possible subset of the complete answer, and propose an online strategy for semantic load shedding. Moving on to random load shedding, we discuss random load shedding strategies that decouple the window maintenance and tuple production operations of the symmetric hash join, and prove that one of them — Probe-No-Insert — always dominates the previously proposed coin flipping strategy.\",\"PeriodicalId\":6819,\"journal\":{\"name\":\"22nd International Conference on Data Engineering (ICDE'06)\",\"volume\":\"1 1\",\"pages\":\"142-142\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd International Conference on Data Engineering (ICDE'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2006.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference on Data Engineering (ICDE'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2006.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

在CPU或内存资源限制的情况下,数据流系统可能不得不减少负载。我们详细研究了CPU受限的场景。首先,我们提出了一个新的CPU成本模型。然后,我们以获得完整答案的最大可能子集为目标,形式化地描述了减载问题,并提出了一种语义减载的在线策略。继续讨论随机减载策略,我们讨论了将对称哈希连接的窗口维护和元组生成操作解耦的随机减载策略,并证明了其中一种策略——Probe-No-Insert——总是优于先前提出的抛硬币策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Approximating StreamingWindow Joins Under CPU Limitations
Data streaming systems face the possibility of having to shed load in the case of CPU or memory resource limitations. We study the CPU limited scenario in detail. First, we propose a new model for the CPU cost. Then we formally state the problem of shedding load for the goal of obtaining the maximum possible subset of the complete answer, and propose an online strategy for semantic load shedding. Moving on to random load shedding, we discuss random load shedding strategies that decouple the window maintenance and tuple production operations of the symmetric hash join, and prove that one of them — Probe-No-Insert — always dominates the previously proposed coin flipping strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Approach to Adaptive Memory Management in Data Stream Systems Revision Processing in a Stream Processing Engine: A High-Level Design SUBSKY: Efficient Computation of Skylines in Subspaces How to Determine a Good Multi-Programming Level for External Scheduling Warehousing and Analyzing Massive RFID Data Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1