{"title":"Psidii Aleuroclava (Singh, 1931)(半翅目:Aleuroclava Psidii dae)的有丝分裂基因组与白蝇线粒体基因重排数量的增加。","authors":"Nan Song, Heng Zhang, Run-e Bai, Hao Meng","doi":"10.31083/j.fbl2705154","DOIUrl":null,"url":null,"abstract":"BACKGROUND\nIn this study, the entire mitochondrial genome (mitogenome) of Aleuroclava psidii (Singh, 1931) (Hemiptera: Aleyrodidae) was sequenced. The species A. psidii is currently classified in the subfamily Aleyrodinae. This mitogenome is the first representative from the genus Aleuroclava.\n\n\nMETHODS\nNext-generation sequencing was used to obtain the molecular data. We conducted phylogenetic analyses with 18 existing mitogenomes of whiteflies and three outgroups of psyllids, under the Maximum likelihood and Bayesian inference criteria.\n\n\nRESULTS\nThe arrangement of genes differed between the mitogenome of A. psidii and the putative ancestral insect mitogenome, and also differed from the mitogenomes of other whiteflies. Mitochondrial gene rearrangements involved the transpositions of trnQ, trnY, and the protein-coding gene nad1. Most hemipteran mitogenomes have the same mitochondrial gene order as that inferred to be ancestral for insects. However, there are an increased number of gene rearrangements in the mitogenomes of whiteflies. Phylogenetic reconstructions supported Aleurodicinae and Aleyrodinae as being monophyletic.\n\n\nCONCLUSIONS\nComparison of the gene order of mitogenomes revealed a clade-specific evolutionary trend in whiteflies. This study demonstrates the potential of using structural rearrangements to resolve major phylogenetic relationships within Aleyrodidae.","PeriodicalId":50430,"journal":{"name":"Frontiers in Bioscience-Landmark","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Mitogenome of Aleuroclava Psidii (Singh, 1931) (Hemiptera: Aleyrodidae) and Increased Number of Mitochondrial Gene Rearrangements in Whiteflies.\",\"authors\":\"Nan Song, Heng Zhang, Run-e Bai, Hao Meng\",\"doi\":\"10.31083/j.fbl2705154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND\\nIn this study, the entire mitochondrial genome (mitogenome) of Aleuroclava psidii (Singh, 1931) (Hemiptera: Aleyrodidae) was sequenced. The species A. psidii is currently classified in the subfamily Aleyrodinae. This mitogenome is the first representative from the genus Aleuroclava.\\n\\n\\nMETHODS\\nNext-generation sequencing was used to obtain the molecular data. We conducted phylogenetic analyses with 18 existing mitogenomes of whiteflies and three outgroups of psyllids, under the Maximum likelihood and Bayesian inference criteria.\\n\\n\\nRESULTS\\nThe arrangement of genes differed between the mitogenome of A. psidii and the putative ancestral insect mitogenome, and also differed from the mitogenomes of other whiteflies. Mitochondrial gene rearrangements involved the transpositions of trnQ, trnY, and the protein-coding gene nad1. Most hemipteran mitogenomes have the same mitochondrial gene order as that inferred to be ancestral for insects. However, there are an increased number of gene rearrangements in the mitogenomes of whiteflies. Phylogenetic reconstructions supported Aleurodicinae and Aleyrodinae as being monophyletic.\\n\\n\\nCONCLUSIONS\\nComparison of the gene order of mitogenomes revealed a clade-specific evolutionary trend in whiteflies. This study demonstrates the potential of using structural rearrangements to resolve major phylogenetic relationships within Aleyrodidae.\",\"PeriodicalId\":50430,\"journal\":{\"name\":\"Frontiers in Bioscience-Landmark\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Bioscience-Landmark\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.31083/j.fbl2705154\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Immunology and Microbiology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioscience-Landmark","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.31083/j.fbl2705154","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
The Mitogenome of Aleuroclava Psidii (Singh, 1931) (Hemiptera: Aleyrodidae) and Increased Number of Mitochondrial Gene Rearrangements in Whiteflies.
BACKGROUND
In this study, the entire mitochondrial genome (mitogenome) of Aleuroclava psidii (Singh, 1931) (Hemiptera: Aleyrodidae) was sequenced. The species A. psidii is currently classified in the subfamily Aleyrodinae. This mitogenome is the first representative from the genus Aleuroclava.
METHODS
Next-generation sequencing was used to obtain the molecular data. We conducted phylogenetic analyses with 18 existing mitogenomes of whiteflies and three outgroups of psyllids, under the Maximum likelihood and Bayesian inference criteria.
RESULTS
The arrangement of genes differed between the mitogenome of A. psidii and the putative ancestral insect mitogenome, and also differed from the mitogenomes of other whiteflies. Mitochondrial gene rearrangements involved the transpositions of trnQ, trnY, and the protein-coding gene nad1. Most hemipteran mitogenomes have the same mitochondrial gene order as that inferred to be ancestral for insects. However, there are an increased number of gene rearrangements in the mitogenomes of whiteflies. Phylogenetic reconstructions supported Aleurodicinae and Aleyrodinae as being monophyletic.
CONCLUSIONS
Comparison of the gene order of mitogenomes revealed a clade-specific evolutionary trend in whiteflies. This study demonstrates the potential of using structural rearrangements to resolve major phylogenetic relationships within Aleyrodidae.
期刊介绍:
FBL is an international peer-reviewed open access journal of biological and medical science. FBL publishes state of the art advances in any discipline in the area of biology and medicine, including biochemistry and molecular biology, parasitology, virology, immunology, epidemiology, microbiology, entomology, botany, agronomy, as well as basic medicine, preventive medicine, bioinformatics and other related topics.