Mhammed Benhayoun, Mouhcine Razi, A. Mansouri, A. Ahaitouf
{"title":"基于分层邻近变量节点调度的低复杂度LDPC译码算法","authors":"Mhammed Benhayoun, Mouhcine Razi, A. Mansouri, A. Ahaitouf","doi":"10.1155/2022/1407788","DOIUrl":null,"url":null,"abstract":"The informed dynamic scheduling (IDS) strategies for the low-density parity check (LDPC) decoding have shown superior performance in error correction and convergence speed, particularly those based on reliability measures and residual belief propagation (RBP). However, the search for the most unreliable variable nodes and the residual precomputation required for each iteration of the IDS-LDPC increases the complexity of the decoding process which becomes more sequential, making it hard to exploit the parallelism of signal processing algorithms available in multicore platforms. To overcome this problem, a new, low-complexity scheduling system, called layered vicinal variable nodes scheduling (LWNS) is presented in this paper. With this LWNS, each variable node is updated by exchanging intrinsic information with all its associated control and variable nodes before moving to the next variable node updating. The proposed scheduling strategy is fixed by a preprocessing step of the parity control matrix instead of calculation of the residuals values and by computation of the most influential variable node instead the most unreliable metric. It also allows the parallel processing of independent Tanner graph subbranches identified and grouped in layers. Our simulation results show that the LWNS BP have an attractive convergence rate and better error correction performance with low complexity when compared to previous IDS decoders under the white Gaussian noise channel (AWGN).","PeriodicalId":45541,"journal":{"name":"Modelling and Simulation in Engineering","volume":"84 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Low-Complexity LDPC Decoding Algorithm Based on Layered Vicinal Variable Node Scheduling\",\"authors\":\"Mhammed Benhayoun, Mouhcine Razi, A. Mansouri, A. Ahaitouf\",\"doi\":\"10.1155/2022/1407788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The informed dynamic scheduling (IDS) strategies for the low-density parity check (LDPC) decoding have shown superior performance in error correction and convergence speed, particularly those based on reliability measures and residual belief propagation (RBP). However, the search for the most unreliable variable nodes and the residual precomputation required for each iteration of the IDS-LDPC increases the complexity of the decoding process which becomes more sequential, making it hard to exploit the parallelism of signal processing algorithms available in multicore platforms. To overcome this problem, a new, low-complexity scheduling system, called layered vicinal variable nodes scheduling (LWNS) is presented in this paper. With this LWNS, each variable node is updated by exchanging intrinsic information with all its associated control and variable nodes before moving to the next variable node updating. The proposed scheduling strategy is fixed by a preprocessing step of the parity control matrix instead of calculation of the residuals values and by computation of the most influential variable node instead the most unreliable metric. It also allows the parallel processing of independent Tanner graph subbranches identified and grouped in layers. Our simulation results show that the LWNS BP have an attractive convergence rate and better error correction performance with low complexity when compared to previous IDS decoders under the white Gaussian noise channel (AWGN).\",\"PeriodicalId\":45541,\"journal\":{\"name\":\"Modelling and Simulation in Engineering\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelling and Simulation in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/1407788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/1407788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Low-Complexity LDPC Decoding Algorithm Based on Layered Vicinal Variable Node Scheduling
The informed dynamic scheduling (IDS) strategies for the low-density parity check (LDPC) decoding have shown superior performance in error correction and convergence speed, particularly those based on reliability measures and residual belief propagation (RBP). However, the search for the most unreliable variable nodes and the residual precomputation required for each iteration of the IDS-LDPC increases the complexity of the decoding process which becomes more sequential, making it hard to exploit the parallelism of signal processing algorithms available in multicore platforms. To overcome this problem, a new, low-complexity scheduling system, called layered vicinal variable nodes scheduling (LWNS) is presented in this paper. With this LWNS, each variable node is updated by exchanging intrinsic information with all its associated control and variable nodes before moving to the next variable node updating. The proposed scheduling strategy is fixed by a preprocessing step of the parity control matrix instead of calculation of the residuals values and by computation of the most influential variable node instead the most unreliable metric. It also allows the parallel processing of independent Tanner graph subbranches identified and grouped in layers. Our simulation results show that the LWNS BP have an attractive convergence rate and better error correction performance with low complexity when compared to previous IDS decoders under the white Gaussian noise channel (AWGN).
期刊介绍:
Modelling and Simulation in Engineering aims at providing a forum for the discussion of formalisms, methodologies and simulation tools that are intended to support the new, broader interpretation of Engineering. Competitive pressures of Global Economy have had a profound effect on the manufacturing in Europe, Japan and the USA with much of the production being outsourced. In this context the traditional interpretation of engineering profession linked to the actual manufacturing needs to be broadened to include the integration of outsourced components and the consideration of logistic, economical and human factors in the design of engineering products and services.