Ebru Reyyan Toroz, Yasemin Akdag, Malhun Fakioglu, Sevde Korkut, Ece Sagir Kurt, Ezgi Atli, H. Guven, H. Ozgun, I. Ozturk, M. Ersahin
{"title":"臭氧剂量和接触时间对臭氧氧化处理高倍率活性污泥工艺出水性能的影响","authors":"Ebru Reyyan Toroz, Yasemin Akdag, Malhun Fakioglu, Sevde Korkut, Ece Sagir Kurt, Ezgi Atli, H. Guven, H. Ozgun, I. Ozturk, M. Ersahin","doi":"10.1080/01919512.2022.2157243","DOIUrl":null,"url":null,"abstract":"ABSTRACT In recent years, there has been an increase in the interest on organic compounds originating from anthropogenic activities. The presence of these micropollutants in waterbodies can be detrimental for the aquatic organisms even at their trace concentrations. Removal of micropollutants from wastewater by conventional treatment methods is quite limited, thereby existing wastewater treatment plants are not capable of removing these micropollutants. This study investigated the removal of 27 micropollutants and conventional pollution parameters by ozonation of the effluent from a pilot-scale high-rate activated sludge system treating municipal wastewater. Different ozone dosages and contact times were tested during the study. Results revealed that 7 out of 27 micropollutants were detected in the effluent. Over 45% chemical oxygen demand (COD) removal and over 65% total suspended solids (TSS) removal were achieved by the ozonation process. Among the various ozone dosage and contact time combinations investigated in the study; 6 mg/L ozone dosage-20 min contact time, and 9 mg/L ozone dosage-10 min contact time alternatives resulted with the best treatment performance in terms of the removal of micropollutants, COD, TSS, and turbidity. A feasibility analysis was conducted to evaluate the best operational conditions from a techno-economic perspective and the results revealed that the unit cost for ozonation process ranged between 0.033 $/m3 and 0.043 $/m3. Additionally, considering the feasibility, 6 mg/L ozone dose – 20 min contact time combination was found as the optimum alternative. Based on the promising results obtained in this study, ozonation can be offered as a polishing step for the effluents of high-rate activated sludge systems for the improving of the effluent quality.","PeriodicalId":19580,"journal":{"name":"Ozone: Science & Engineering","volume":"12 1","pages":"431 - 445"},"PeriodicalIF":2.1000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effects of Ozone Dose and Contact Time on Ozonation Process Performance for Treatment of High Rate Activated Sludge Process Effluent\",\"authors\":\"Ebru Reyyan Toroz, Yasemin Akdag, Malhun Fakioglu, Sevde Korkut, Ece Sagir Kurt, Ezgi Atli, H. Guven, H. Ozgun, I. Ozturk, M. Ersahin\",\"doi\":\"10.1080/01919512.2022.2157243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In recent years, there has been an increase in the interest on organic compounds originating from anthropogenic activities. The presence of these micropollutants in waterbodies can be detrimental for the aquatic organisms even at their trace concentrations. Removal of micropollutants from wastewater by conventional treatment methods is quite limited, thereby existing wastewater treatment plants are not capable of removing these micropollutants. This study investigated the removal of 27 micropollutants and conventional pollution parameters by ozonation of the effluent from a pilot-scale high-rate activated sludge system treating municipal wastewater. Different ozone dosages and contact times were tested during the study. Results revealed that 7 out of 27 micropollutants were detected in the effluent. Over 45% chemical oxygen demand (COD) removal and over 65% total suspended solids (TSS) removal were achieved by the ozonation process. Among the various ozone dosage and contact time combinations investigated in the study; 6 mg/L ozone dosage-20 min contact time, and 9 mg/L ozone dosage-10 min contact time alternatives resulted with the best treatment performance in terms of the removal of micropollutants, COD, TSS, and turbidity. A feasibility analysis was conducted to evaluate the best operational conditions from a techno-economic perspective and the results revealed that the unit cost for ozonation process ranged between 0.033 $/m3 and 0.043 $/m3. Additionally, considering the feasibility, 6 mg/L ozone dose – 20 min contact time combination was found as the optimum alternative. Based on the promising results obtained in this study, ozonation can be offered as a polishing step for the effluents of high-rate activated sludge systems for the improving of the effluent quality.\",\"PeriodicalId\":19580,\"journal\":{\"name\":\"Ozone: Science & Engineering\",\"volume\":\"12 1\",\"pages\":\"431 - 445\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ozone: Science & Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/01919512.2022.2157243\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ozone: Science & Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/01919512.2022.2157243","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Effects of Ozone Dose and Contact Time on Ozonation Process Performance for Treatment of High Rate Activated Sludge Process Effluent
ABSTRACT In recent years, there has been an increase in the interest on organic compounds originating from anthropogenic activities. The presence of these micropollutants in waterbodies can be detrimental for the aquatic organisms even at their trace concentrations. Removal of micropollutants from wastewater by conventional treatment methods is quite limited, thereby existing wastewater treatment plants are not capable of removing these micropollutants. This study investigated the removal of 27 micropollutants and conventional pollution parameters by ozonation of the effluent from a pilot-scale high-rate activated sludge system treating municipal wastewater. Different ozone dosages and contact times were tested during the study. Results revealed that 7 out of 27 micropollutants were detected in the effluent. Over 45% chemical oxygen demand (COD) removal and over 65% total suspended solids (TSS) removal were achieved by the ozonation process. Among the various ozone dosage and contact time combinations investigated in the study; 6 mg/L ozone dosage-20 min contact time, and 9 mg/L ozone dosage-10 min contact time alternatives resulted with the best treatment performance in terms of the removal of micropollutants, COD, TSS, and turbidity. A feasibility analysis was conducted to evaluate the best operational conditions from a techno-economic perspective and the results revealed that the unit cost for ozonation process ranged between 0.033 $/m3 and 0.043 $/m3. Additionally, considering the feasibility, 6 mg/L ozone dose – 20 min contact time combination was found as the optimum alternative. Based on the promising results obtained in this study, ozonation can be offered as a polishing step for the effluents of high-rate activated sludge systems for the improving of the effluent quality.
期刊介绍:
The only journal in the world that focuses on the technologies of ozone and related oxidation technologies, Ozone: Science and Engineering brings you quality original research, review papers, research notes, and case histories in each issue. Get the most up-to date results of basic, applied, and engineered research including:
-Ozone generation and contacting-
Treatment of drinking water-
Analysis of ozone in gases and liquids-
Treatment of wastewater and hazardous waste-
Advanced oxidation processes-
Treatment of emerging contaminants-
Agri-Food applications-
Process control of ozone systems-
New applications for ozone (e.g. laundry applications, semiconductor applications)-
Chemical synthesis.
All submitted manuscripts are subject to initial appraisal by the Editor, and, if found suitable for further consideration, to peer review by independent, anonymous expert referees.