Deepak Maram, Harjasleen Malvai, Fan Zhang, Nerla Jean-Louis, Alexander Frolov, T. Kell, Tyrone Lobban, Christine Moy, A. Juels, Andrew K. Miller, ‡UIUC, §J, P. Morgan
{"title":"坦率:具有遗产兼容性、抗sybil和问责性的Can-Do分散身份","authors":"Deepak Maram, Harjasleen Malvai, Fan Zhang, Nerla Jean-Louis, Alexander Frolov, T. Kell, Tyrone Lobban, Christine Moy, A. Juels, Andrew K. Miller, ‡UIUC, §J, P. Morgan","doi":"10.1109/SP40001.2021.00038","DOIUrl":null,"url":null,"abstract":"We present CanDID, a platform for practical, user-friendly realization of decentralized identity, the idea of empowering end users with management of their own credentials.While decentralized identity promises to give users greater control over their private data, it burdens users with management of private keys, creating a significant risk of key loss. Existing and proposed approaches also presume the spontaneous availability of a credential-issuance ecosystem, creating a bootstrapping problem. They also omit essential functionality, like resistance to Sybil attacks and the ability to detect misbehaving or sanctioned users while preserving user privacy.CanDID addresses these challenges by issuing credentials in a user-friendly way that draws securely and privately on data from existing, unmodified web service providers. Such legacy compatibility similarly enables CanDID users to leverage their existing online accounts for recovery of lost keys. Using a decentralized committee of nodes, CanDID provides strong confidentiality for user’s keys, real-world identities, and data, yet prevents users from spawning multiple identities and allows identification (and blacklisting) of sanctioned users.We present the CanDID architecture and report on experiments demonstrating its practical performance.","PeriodicalId":6786,"journal":{"name":"2021 IEEE Symposium on Security and Privacy (SP)","volume":"257 1","pages":"1348-1366"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"CanDID: Can-Do Decentralized Identity with Legacy Compatibility, Sybil-Resistance, and Accountability\",\"authors\":\"Deepak Maram, Harjasleen Malvai, Fan Zhang, Nerla Jean-Louis, Alexander Frolov, T. Kell, Tyrone Lobban, Christine Moy, A. Juels, Andrew K. Miller, ‡UIUC, §J, P. Morgan\",\"doi\":\"10.1109/SP40001.2021.00038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present CanDID, a platform for practical, user-friendly realization of decentralized identity, the idea of empowering end users with management of their own credentials.While decentralized identity promises to give users greater control over their private data, it burdens users with management of private keys, creating a significant risk of key loss. Existing and proposed approaches also presume the spontaneous availability of a credential-issuance ecosystem, creating a bootstrapping problem. They also omit essential functionality, like resistance to Sybil attacks and the ability to detect misbehaving or sanctioned users while preserving user privacy.CanDID addresses these challenges by issuing credentials in a user-friendly way that draws securely and privately on data from existing, unmodified web service providers. Such legacy compatibility similarly enables CanDID users to leverage their existing online accounts for recovery of lost keys. Using a decentralized committee of nodes, CanDID provides strong confidentiality for user’s keys, real-world identities, and data, yet prevents users from spawning multiple identities and allows identification (and blacklisting) of sanctioned users.We present the CanDID architecture and report on experiments demonstrating its practical performance.\",\"PeriodicalId\":6786,\"journal\":{\"name\":\"2021 IEEE Symposium on Security and Privacy (SP)\",\"volume\":\"257 1\",\"pages\":\"1348-1366\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Symposium on Security and Privacy (SP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SP40001.2021.00038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium on Security and Privacy (SP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP40001.2021.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CanDID: Can-Do Decentralized Identity with Legacy Compatibility, Sybil-Resistance, and Accountability
We present CanDID, a platform for practical, user-friendly realization of decentralized identity, the idea of empowering end users with management of their own credentials.While decentralized identity promises to give users greater control over their private data, it burdens users with management of private keys, creating a significant risk of key loss. Existing and proposed approaches also presume the spontaneous availability of a credential-issuance ecosystem, creating a bootstrapping problem. They also omit essential functionality, like resistance to Sybil attacks and the ability to detect misbehaving or sanctioned users while preserving user privacy.CanDID addresses these challenges by issuing credentials in a user-friendly way that draws securely and privately on data from existing, unmodified web service providers. Such legacy compatibility similarly enables CanDID users to leverage their existing online accounts for recovery of lost keys. Using a decentralized committee of nodes, CanDID provides strong confidentiality for user’s keys, real-world identities, and data, yet prevents users from spawning multiple identities and allows identification (and blacklisting) of sanctioned users.We present the CanDID architecture and report on experiments demonstrating its practical performance.